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Al g ebraic STmcfv«re

In mathematics, and more specifically in abstract algebra, the term

algebraic structure

generally refers to a set (called carrier set

or underlying set) with one or more finitary operations defined on

it that satisfies a list of axioms.[1]

Examples of algebraic structures include|groups

lattices

rings

fields

L and

More complex structures can be defined by introducing

multiple operations, different underlying sets, or by altering the
defining axioms. Examples of more complex algebraic structures

include

vector spaces

modules

and

algebras

/g Youps

rangs

Fields

\\ lathices

Vectw Space

Mo dules

(lgebras




Set, Qrowp, R'mg, Field

A set is a collection of unique elements. The definition of a

specific set determines which elements are members of the

———set. Elements not specifically defined as members ofasetare

not in the set.

A group is an algebraic system consisting of a set,

—anidentity element for each operaton, ———— — —

(Gné)operation and its inverse operation.
—

A'ring is an algebraic system consisting of a set,

-~ an identity element for each operaton,

(two, operations and the inverse operation of the first operation.

A field is an algebraic system consisting of a set,

—anidentity element for each operaton, —

mperations and their respective inverse operations.
S~——V
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A group is a set, G, together with an operation «
(called the group law of G) that combines any two
elements a and b to form another element, denoted
a = b or ab. To qualify as a group, the set and
operation, (G, *), must satisfy four requirements

known as the|group axioms|[>]

Closure

For all a, b in G, the result of the operation, a » b, is
also in G.bU’]
Associativity

Foralla,bandcinG,(a*b)*c=a=(b»c).
Identity element

There exists an element e in G, such that for every
element a in G, the equatione+ra=a-+e=a

[Tlhe axioms for a group are
short and natural... Yet
somehow hidden behind these
axioms is the monster simple
group, a huge and
extraordinary mathematical
object, which appears to rely on
numerous bizarre coincidences
to exist. The axioms for groups
give no obvious hint that
anything like this exists.

Richard Borcherds in
Mathematicians: An Outer View
of the Inner World [4]

holds. Such an element is unique (see below), and thus one speaks of the identity

element.
Inverse element

For each a in G, there exists an element b in G, commonly denoted a~1 (or —a, if the

operation is denoted "+"), such thata =« b= b » a = e, where e is the identity

element.




Abelian group

From Wikipedia, the free encyclopedia —

For the group described by the archaic use of the related term "Ab¢
group. -

In abstract algebra, an abelian group, also called a commutative

group, is a group in which the result of applying the group operation —
to two group elements does not depend on the order in which they

are written (the axiom of commutativity). Abelian groups generalize

the arithmetic of addition of integers. They are named after Niels
Henrik Abel.[1]

nperatinn and its inverse operation.

A group is an algebraic system consisting of a set,
~an identity element for each operation,




Abeliam Group  Dekintion

An abelian group is a set, A, together with an operation = that combines any

two elements a and b to form another element denoted a » b. The symbol = is a

general placeholder for a concretely given operation. To qualify as an abelian
— group, the set and operation, (A, =), must satisfy five requirements known as the
— abelian group axioms:

——— Closure
For all a, b in A, the result of the operation a = b is also in A.

@ Associ Etl\flt}"

Forall a, b and cin A, the equation(a » b)»c=a = (b » c) holds.

g Identity element
There exists an element e in A, such that for all elements a in A, the

equatione =a = a » e = a holds.

1\ Inverse element
For each a in A, there exists an elementb in A suchthata«b=5b++a = e,
where e is the identity element.

§ Commutativity

Foralla,binA,a~b=5b»a.

More compactly, an abelian group is a commutative group. A group in which
the group operation is not commutative is called a "non-abelian group" or
"non-commutative group".




Oy H«o& onel. G\rom'os

In mathematics, thelorthogonal group

in dimension n, denoted O(n), is

the group of distance-preserving transformations of a Euclidean space of
dimension n that preserve a fixed point, where the group operation is given

by composing transformations. Equivalently, it is the group of nxn
orthogonal matrices, where the group operation is given by matrix

multiplication, and an orthogonal matrix is a real matrix whose inverse

equals its transpose.

The determinant of an orthogonal matrix being either 1 or -1, an important

subgroup of O(n) is the| special orthogonal group| denoted 50(n), of the

orthogonal matrices of determinant 1. This group is also called the

rotation group, because, in dimensions 2 and 3, its elements are the
- usual rotations around a point (in dimension 2) or a line (in dimension 3). In
~ low dimension, these groups have been widely studied, see 50(2), 50(3)

and 50(4).




Ring  peliniEjonm

Aring is a set R equipped with binary ngeratinns“@n:@atisfying the following
three sets of axioms, called the[ring axiomsg[2][3][4]

1. R is anl|abelian group pnder addition, meaning that

sela+b)+c=a+(b+c)foralla, b,cinR (+ is associative).
sa+b=b+aforalla, binR (+ is commutative).
s« There is an element 0 in R such thata + 0 = a forall 3 in R (0 is the additive
identity).
+« For each a in R there exists —a in R such thata + (—a) = 0 (—a is the additive
% inverse of a).

2.Ris under multiplication, meaning that:

s{a-b)-c=a-(b-c)foralla, b,cinR (-is associative).

« ThereisanelementlinRsuchthata-1=aandl-a=aforallainR (1isthe
multiplicative identity).[5]

3. Multiplication is distributive with respect to addition:

ea-(b+c)=(a-b)+ (a-c)forall a, b, cinR (left distributivity).
s(b+c)-a=(b-a)+ (c-a)forall a, b, cinR (right distributivity).

Aring is an algebraic system consisting of a set,
an identity element for each operation,

@Uperations and the inverse operation of the first operation.
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In abstract algebra, a branch of mathematics, a monoid is an algebraic structure with a
single associative binary operation and an identity element. Monoids are studied in
semigroup theory as they are semigroups with identity. Monoids occur in several branches
matics; for instance, they can be regarded as categories with a single object. Thus,

they capture the idea of function composition within a set. Monoids are also commonly used
in computer science, both in its foundational aspects and in practical programming. The set
of strings built from a given set of characters is a free monoid. The transition monoid and
syntactic monoid are used in describing finite state machines, whereas trace monoids and
history monoids provide a foundation for process calculi and concurrent computing. Some
of the more important results in the study of monoids are the Krohn-Rhodes theorem and
the star height problem. The history of monoids, as well as a discussion of additional
general properties, are found in the article on semigroups.
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Definition [ edit

Suppose that 5 is a set and = is some binary operation 5 x 5 —» 5, then S with = is a monoid
if it satisfies the following two axioms:

Associativity

Foralla, bandcin 5, the equation (a = b) * c = a = (b * c) holds.

Identity element

—  There exists an element e in 5 such that for every element a in S, the equations
e*a=a-+*e=ahold.

In other words, a monoid is a semigroup with an identity element. It can also be thought of
as a magma with associativity and identity. The identity element of a monoid is unigque.[ll A

monoid in which each element has an inverse is a group.

Depending on the context, the symbol for the binary operation may be omitted, so that the

operation is denoted by juxtaposition; for example, the monoid axioms may be written
(ab)e = a(be) and ea = ae = a. This notation does not imply that it is numbers being

multiplied.




In mathematics, a semigroup is an algebraic structure consisting of a set together
with an associative binary operation. The binary operation of a semigroup is most
often denoted multiplicatively: x-y, or simply xy, denotes the result of applying the

semigroup operation to the ordered pair (x, y). Associativity is formally expressed as —

that (x-y)-z = x-(y-z) for all x, y and z in the semigroup.

The name "semigroup" originates in the fact that a semigroup generalizes a group
by preserving only associativity and closure under the binary operation from the
axioms defining a group.["®™ 1l From the opposite point of view (of adding rather
than removing axioms), a semigroup is an associative magma. As in the case of

groups or magmas, the semigroup operation need not be commutative, so x-y is not

necessarily equal to y-x; a typical example of associative but non-commutative
operation is matrix multiplication. If the semigroup operation is commutative, then
the semigroup is called a commutative semigroup or (less often than in the
analogous case of groups) it may be called an abelian semigroup.




A monoid is an algebraic structure intermediate between groups and semigroups,
and is a semigroup having an identity element, thus obeying all but one of the
axioms of a group; existence of inverses is not required of a monoid. A natural

example is strings with concatenation as the binary operation, and the empty string —

as the identity element. Restricting to non-empty strings gives an example of a
semigroup that is not a monoid. Positive integers with addition form a commutative
semigroup that is not a monoid. Whereas the non-negative integers do form a
monoid. A semigroup without an identity element can be easily turned into a
monoid by just adding an identity element. Consequently, monoids are studied in
the theory of semigroups rather than in group theory. Semigroups should not be
confused with quasigroups, which are a generalization of groups in a different
direction; the operation in a quasigroup need not be associative but quasigroups
preserve from groups a notion of division. Division in semigroups (or in monoids) is
not possible in general.







Rield

In mathematics, a field is one of the fundamental algebraic structures used in

abstract algebra. It is a nonzero commutative division ring, or equivalently a ring

— whose nonzero elements form an abelian group under multiplication. As such itis —
— an algebraic structure with notions of addition, subtraction, multiplication, and B
division satisfying the appropriate abelian group equations and distributive law. The

most commonly used fields are the field of real numbers, the field of complex
numbers, and the field of rational numbers, but there are also finite fields, algebraic

function fields, algebraic number fields, p-adic fields, and so forth.

Any field may be used as the scalars for a vector space, which is the standard
— general context for linear algebra. The theory of field extensions (including Galois ———

_ theory) involves the roots of polynomials with coefficients in a field; among other
results, this theory leads to impossibility proofs for the classical problems of angle

trisection and squaring the circle with a compass and straightedge, as well as a
proof of the Abel-Ruffini theorem on the algebraic insolubility of quintic equations.
— In modern mathematics, the theory of fields (or field theory) plays an essential E—

— role in number theory and algebraic geometry. E—

——— As an algebraic structure, every field is a ring, but not every ring is a field. The most ———
important difference is that fields allow for division (though not division by zero),
while a ring need not possess multiplicative inverses; for example the integers form
a ring, but 2x = 1 has no solution in integers. Also, the multiplication operation in a

field is required to be commutative. A ring in which division is possible but
—— commutativity is not assumed (such as the quaternions) is called a division ringor ——

— skew field. (Historically, division rings were sometimes referred to as fields, while o
fields were called commutative fields.)




- Definition and illustration [ edit ]

__Intuitively, a field is a set F that is a commutative group with respect to two compatible operations,
~addition and multiplication (the latter excluding zero), with "compatible" being formalized by
distributivity, and the caveat that the additive and the multiplicative identities are distinct (0 = 1).

~ The most common way to formalize this is by defining a field as a set together with two operations,
usually called addition and multiplication, and denoted by + and -, respectively, such that the following
~axioms hold (note that subtraction and division are defined in terms of the inverse operations of

~ addition and multiplication):[note 1]




Closure of F under addition and multiplication

Foralla, binF, botha + band a - b are in F (or more formally, + and - are binary operations —

on F).

Associativity of addition and multiplication

For all a, b, and c in F, the following equalitieshold: a + (b + c)=(a + b) + c and
a-lb-cl=(a-b)-c.

Commutativity of addition and multiplication

6

_®

For all 2 and b in F, the following equalitieshold:a + b=b+aanda-b=5b-a.

Existence of additive and multiplicative identity elements
There exists an element of F, called the additive identity element and denoted by 0, such
thatforall ainF, a + 0 = a. Likewise, there is an element, called the multiplicative identity
element and denoted by 1, such thatforallain F, 2 - 1 = a. To exclude the trivial ring, the
additive identity and the multiplicative identity are required to be distinct.

Existence of additive inverses and multiplicative inverses
For every a in F, there exists an element —a in F, such that a + (—a) = 0. Similarly, for any a
in F other than 0, there exists an elementa—1in F, such thata - a—1 = 1. (The elements

a + (—b)and a-b~1are also denoted a — b and a/b, respectively.) In other words,
subtraction and division operations exist.

— Distributivity of multiplication over addition

For all a, b and c in F, the following equality holds: a - (b+ c)=(a-b) + (a - c).

A field is therefore an algebraic structure {F, +,-, —, ~1,0, 1»; of type {2,2,1,1, 0,0},

consisting of two abelian groups:

« Funder +, —, and 0;
s« F\ {0}under-, 1, and1, witho=1,

— with - distributing over +.[1]




Ring and field axioms

Ring Commutative Skew field or Field

ring Division ring
Abelian (additive) group Yes Yoo Yes Yes
structure
Multiplicative structure Yes Yes Yec Yes

and distributivity
Commutativity of multiplication | No Yes No Yes
Multiplicative inverses No No Yes Yes
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In mathematics, a finite field or Galois field (so-named in honor of Evariste Galois)
is a field that contains a finite number of elements. As with any field, a finite field is a
set on which the operations of multiplication, addition, subtraction and division are
defined and satisfy certain basic rules. The most common examples of finite fields

are given by the integers mod p when p is a prime number.

The number of elements of a finite field is called its order. A finite field of order g

exists if and only if the order g is a prime pDWEfpk (where p is a prime number and k&

is a positive integer). All fields of a given order are isomorphic. In a field of Drderpk,
adding p copies of any element always results in zero; that is, the characteristic of
the field is p.

fmte [reld

OY A ¢ # D{’ elements

ovdn § <> G = ph pi prime number,

ﬁ : posi t:ye ‘nte M




In a finite field of order g, the polynomial X9 - X has all g elements of the finite field
as roots. The non-zero elements of a finite field form a multiplicative group. This
group is cyclic, so all non-zero elements can be expressed as powers of a single
element called a primitive element of the field (in general there will be several
primitive elements for a given field.)

A field has, by definition, a commutative multiplication operation. A more general
algebraic structure that satisfies all the other axioms of a field but isn't required to
have a commutative multiplication is called a division ring (or sometimes skewfield).
A finite division ring is a finite field by Wedderburn's little theorem. This result shows
that the finiteness condition in the definition of a finite field can have algebraic
conseguences.

Finite fields are fundamental in a number of areas of mathematics and computer
science, including number theory, algebraic geometry, Galois theory, finite
geometry, cryptography and coding theory.




In mathematics, an isomorphism (from the

Ancient Greek: {ooc isos "equal”, and poper

morphe "form" or "shape") is a homomorphism or
morphism (i.e. a mathematical mapping) that

admits an inverse.[note 11 Two mathematical objects

are isomorphic if an isomorphism exists between

them. An automorphism is an isomorphism whose
source and target coincide. The interest of

isomorphisms lies in the fact that two isomorphic

objects cannot be distinguished by using only the

properties used to define morphisms; thus

isomorphic objects may be considered the same as
long as one considers only these properties and

their consequences.

For most algebraic structures, including groups and rings, a homomorphism is an
isomorphism if and only if it is bijective.

In topology, where the morphisms are continuous functions, isomorphisms are also
called homeomorphisms or bicontinuous functions. In mathematical analysis,

where the morphisms are differentiable functions, isomorphisms are also called

diffeomorphisms.










