Memory

Young W. Lim

May 16, 2016

(ロ)、(型)、(E)、(E)、 E) の(()

Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Based on

Computer System Design : System-on-Chip by M.J. Flynn and W. Luk

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Scrtchpad and Cache Memory

- small size memory can access fater
- frequently used instructions / data must be kept in a separate small size memory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Scratchpad Memory
 - A programmer manages directly
 - usually data only
- Cache Memory
 - A dedicated hardware manages
 - instruction / data

Cache Memory Principles

- Spatial Locality
 - neighbor location of a previous access will be accessed again
- Temporal Locality
 - ▶ a sequence of n location references will be accessed again
- Sequentiality
 - next address location of a previous access will accessed again

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cache Parameters

- Physical Word
 - unit of transfer between processor and cache
- Block Size or Line
 - the basic unit of transfer between cache and memory
 - n physical words
- Access Time for a cache hit
 - depends on the cache size and organization
- Access Time for a cache miss
 - depends on the memory and bus
- Time for computing the real address from virtual address

- depends on the address translation hardware
- Number of processor requests per cycle

Cache Organization

- Fetch on demand
 - used in simple computers
 - new memory locality only when a miss occurs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Prefetch
 - anticipate the locality
 - used in I-caches
- 3 types of cache organizations
 - Fully Associative Mapping
 - Direct Mapping
 - Set Associative Mapping

Three Types of Cache Organizations

- Fully Associative Mapping
 - the address of a request is compared with those of all entries in the directory
 - if there exists a match (a directory hit) the correponding data is accessed in the cache
 - otherwise a miss occurs
- Direct Mapping
 - the lower address bits access the directory
 - multiple addresses share the same lower address
 - the higher address bits must be compared to the directory address
 - accessing the cache array can be performed in parallel with accessing the directory

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Set Associative Mapping
 - the combination of Fully Associative and Direct Mapping
 - the lower address bits access the directory
 - 2/4/8 complete line addresses in the directory
 - each address corresponds to a location in a subcache
 - these subarrays can be accessed simultaneously
 - together with the cache directory

Reference

[1] M.J. Flynn and W. Luk, "Computer System Design : System-on-Chip", Wiley, 2011

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ