
Processors

Young W. Lim

May 13, 2016



Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".



Based on

Computer System Design : System-on-Chip
by M.J. Flynn and W. Luk



Processor Architecture

Instruction Set
Microarchitecture - different implementation details
Synthesis result with area time power tradeoff



Instruction Set

A Register Set to hold operands and addresses
Floating Point Registers
A Register for Program Status Word

I including Condition Codes (CC)

Types
I Load-Store (L/S)
I Register-Memory (R/M)



Load Store Architecture

arguments must be in registers before execution
ALU instructions have source and destination registers
regularity of execution
ease of instruction decode
ease of timing requirements
RISC microprocessors



Register Memory Architecture

Operands in registers
One operand in memory
ALU instructions can have a operand in memory
simple program representation

I fewer instructions with variable size (complex) instruction types

complex instruction decoding and timing
IBM mainframe, Intel x86 series



Branches

Branches (jumps) handles program control flow
Unconditional BR
Conditional BC

I check the status of CC
I CC is set by an ALU instructions

F a positive result
F a negative result
F a zero result
F an overflow



Interrupt and Exceptions

User Requested vs Coerced
Maskable vs Nonmaskable
Terminate vs Resume
Asynchronous vs Synchronous
Between vs Within Instructions



MicroArchitecture

an instruction execution pipeline
issue one instruction for each cycle

I many embedded and signal processors

issue many instructions for each cycle
I moder desktop, laptop, server systems

Components
I Memory System
I Execution Unit
I Instruction Unit



Pipeline Delays

Data Conflicts - Unavailability of a source operand
I the needed operand is the result of a preceding uncompleted instruction

Resource Contention
I multiple successive instructions requires the same resource

Run-On Delays (In Order Execution Only)
I when instructions must complete the WB in program order

Branches
I branch resolution
I delay in fetching the branch targer instruction



Instruction Unit

Instruction Register
Instruction Buffer

I for fast instruction decode

Instruction Decoder
I controlling the cache, ALU, registers...
I I-Unit : FSM (hardware)
I E-Unit : micro-prammed control, micro-instruction

Interlock Unit
I the concurrent execution of multiple instructions
I must have the same result when serially executed



Instruction Decoder

Instruction decoder provide
I control and sequencing information
I ensure proper execution (dependency exists between instructions)

schedules the current instruction
I delayed : AG (Address Generate) Cycle

schedules the subsequent instructions
I delayed to preserve in-order execution

selects (predicts) the branch path



Data Interlocks

may be part of I-Unit
determines register dependencies
schedules the AG and EX units
ensures the current instruction does not use a result of a previous
instruction until that result is available
as an instruction is decoded, its source registers are must be checked
they are compared against the destination registers previously issued
instruction
because uncompleted instructions may cause dependencies and
additional delay must be added



Execution Unit

Integer Core Processor
Floating-point Unit
Arithmetic Algorithms



Buffers

change the way instruction timing events occur
decouping the event occurring time and the data utilizing time
allows some additional delays without affecting the performance
latency tolerance

I buffers hold the data awaiting entry into a stage



Branches

reduce significantly performance
conditional branch instruction (BC) tests the CC
a number of cycles between decoding the BC and setting the CC
the simple approache

I do nothing but wait for the CC
I defer the decoding of BC
I if the branch is taken

F the target is fetched during the allotted time for data fetch
I simple to implement and minimizes the amount of excess memory

traffic



Reducing the branch cost

Simple Approaches
I Branch Elimination

F for certain cases, it is possible to replace the branch with other
instruction sets

I Simple Branch Speedup
F reduces the time required for target instruction fetch and CC

determination

Complex Approaches
I Brach Target Capture

F keep the target instruction and address in a table for a later use to
avoid branch delay

I Branch Prediction
F predict the branch result and begin processing on the predicted path



Branch Target Buffers (BTBs)

stores the target instruction of the previous execution of the branch
each entry has

I the current instruction address
I branch target address
I the most recent target instruction

operation
I each instruction fetch indexes the BTB
I if the instruction matches, a prediction is made (taken or not)
I for a branch taken prediction, the target instruction is used
I during the actual resolution at the execution stage, the BTB is updated



BTB Effectiveness

BTBs are used with I-cache
The IF is made to the BTB & I-cache
if it hits in the BTB, the stored target instruction is used without
memory accessing delays
both the target instruction and new PC address are provided
no branch delay for the taken branch that was correctly predicted
the branch instruction itself must be fetched from I-cache

I if the AG result and the CC result is not as expected
I all instruction in the target path must be aborted

effectiveness depends on its hit ratio



Branch Prediction

guessing whether or not a branch will be taken
a static strategy

I based on the type of branch instruction

a dynamic strategy
I based on the recent history of branch history



Concurrent Processors

more than one CPI (cycle per instruction)
multiple instructions a the same time
simultaneous accesses to the instruction and data memory
simultaneous execution of multiple operations
instruction level concurrency
uniprocessors : special case

I only one program stream
I a single instruction counter (PC)
I the original instructions are significantly rearranged
I compiler, execution resources, memory system

F Vector Processors
F VLIW (Very Long Instruction Word)
F Superscalar



Vector Data Structure

Vectors - derived from large data arrays
I conventional data cache cannot handle efficiently
I strided access exhibits little temporal locality
I no reuse of the localities before the items must be replaced

Vector Registers
I decouples arithmetic operations from accessing memory
I source and destination vector register sets
I independent of data cache
I data cache contains only scalar data objects



Vector Processors

1 reduce the I-bandwidth
reduce the number of instructions of a program

2 reorganize data into regular sequences
3 simple loop constructs

removing the control overhead

extensions
I the instruction set
I the function units
I the register sets
I the memory



ILP (Instruction Level Parallelism)

multiple-issue machines
combination of

I statically scheduling
I dynamical analysis

to execute concurrently many instructions as possible
the actual evaluation phase of several different operations
execution rate : more than one operation per cycle



Pipelined Processor

simple pipelined processor
only one operation in each phase at any given time

I IF (instruction fetch)
I ID (instruction decode)
I AG (address generation)
I DF (data fetch)
I EX (execution)
I WB (write back)



Static vs Dynamic Pipeline

Static Pipeline
I go through all pipeline stages
I whether a particular instruction needs or not

Dynamic Pipeline
I bypassing some stages is allowed
I sometimes out of order execution is allowed
I out of order completion or initiation
I but must ensure the sequential consistency of the original program
I pipelined SOFT processor



Multiple Issue Machines

Superscalar
I dynamically examines the instruction stream
I find out independent and concurrently executable instructions

VLIW
I depends on the compiler
I analyze the available operations (OP)
I schedule independent operations into wide instruction words



Superscalar Processors

Dynamic pipeline : single issue (single operation per cycle)
Superscalar : multiple issue (serveral operations per cycle)

I adopting multiple functional units
I dynamic scheduler

F transparent to user
F binary code compatibility with non-superscalar processors

I a scheduling instruction window
I dependency is checked by hardware before an instruction is issued for

execution

the complexity of the required hardware limit 4~6 operations per cycle
2 operations per cycle is typical



VLIW Processors

VLIW depends on static analysis of the compiler used
more simple hardware than superscalar processors
executes multiple independent operations statically scheduled by the
compiler
but not all applications are effectively scheduled statically
2 types of execution variation

I delayed results form operations whose latency differs from the assumed
latency scheduled by the compiler

I interruption from exceptions or interrupts, which change the execution
path to a completely different and unatincipated code schedule



VLIW Processors

multiple-issue machines
group instructions according to dependencies

I statically scheduled
I dynamically scheduled



VLIW Processors

multiple-issue machines
group instructions according to dependencies

I statically scheduled
I dynamically scheduled



Reference

[1] M.J. Flynn and W. Luk, “Computer System Design : System-on-Chip”,
Wiley, 2011


