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Energy and average power in time domain

power spectral density for continuous time signals
Energy, Average Power — deterministic, time domain
a deterministic signal x(t)

x(t) —-T<t<T
0 otherwise

the energy
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Fourier transform
power spectral density for continuous time signals

Fourier Transform Pair x(7) <= X ()

Fourier transform

Young W Lim Power Spectral Density - Continuous Time



Fourier transform of x7(1)

for continuous time signals

bounded duration, bounded variation

for a finite T, x7(t) is assumed to have bounded variation

+T
/ Ix(£)|dt < oo
T

the Fourier transform of x7(1)

X7 ( ):/JFOOXT(t)e_j tdt

oo

=1 .
:/ x(t)e ™ tdt
-T
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Fourier transforms of x7(t) and X7 (1)

power spectral density for continuous time signals

deterministic X7 (@) v.s. random X7 ()

a deterministic sample signal x7(t)
x7(t) <= X7()
a random process signal X7 (1)

XT(t) < XT( )
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Parseval's theorem (I)

power spectral density for continuous time signals

for a deterministic x7 (1)

a deterministic sample signal x7(1)

/+wa(r)xfr(r)dr:1 /:wxr( )X2(0)do
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Parseval's theorem (II)

power spectral density for continuous time signals

for a deterministic x7(%) v.s. a random X (1)

@ a deterministic signal x7 (1) <= X7(®)
oo 1 [+
| rPde= o [ ixr(0)Pdo
@ a random signal X7 (1) <= Xt (®)

/_J:QE [|XT(t)’2} dt = ;t/_:wE “XT( )’2} do
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Energy and average power in frequency domain

power spectral density for continuous time signals

Energy, Average Power — Parseval’s theorem applied

a deterministic signal x7(t)

x(1t) -T<t<T

i) = { 0 otherwise a(E) =T (@)

the energy by Parseval's theorem

1
on

E(T):/fTsz(t)dt / X7 (0)[2de

the average power by Parseval's theorem

P(T):%K (t)dt = o /+WLT L
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E(T) and P(T) in frequency domain — deterministic case

power spectral density for continuous time signals

deterministic x7 (1) <= X7(®)

the energy for the deterministic X7 () in x7(t) <= X71(®)

E(T)=5 [ IXr(0)do

the average power for the deterministic Xt ()

1 [ | Xr(0)P?
P(T):%/_m S do

the power spectral density for the deterministic X7 ()

()P
T 2T
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E(T) and P(T) in frequency domain — random case

power spectral density for continuous time signals

random X7 (1) <= X7 (o)

the energy for the random Xt (@) in X7(t) <= Xr(®)

E(T) =5 [ ElXr(0)P]do

—oo

the average power for the random X7 ()

P(T)— 1 /+mEUXT( )‘2]

o). T 99

the power spectral density for the random X7 ()

e
T —eo 2T
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Average power P(T) — bounded duraton (—T,+T)

power spectral density for continuous time signals

_
P(T) = 21T/+T 2(1)dt

@ not the average power in a random process
only the power in one sample function
e to obtain the average power over all possible realizations,
replace x(t) by X(t)
take the expected value of x?(1), that is TE [X?(1)]
e then, the average power is a random variable
with respect to the random process X(t)

@ not the average power in an entire sample function
e take T — oo to include all power in the ensemble member
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Average power Pxx — unbounded duraton (—oo, +o0)

power spectral density for continuous time signals

P(T) = 21_,_/+TTx2(t)dt

e replace x(t) by the random variable X(t)
o take the expected value of x?(1), that is £ [X?(t)]

P(T) = 21T/_+TTE X2(1)] dt

@ take T — oo to include all power

: 1 >
Pxx = lim P(T)|= lim o= | E[X?()]dt
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Average power Pxx — time average Ale]

power spectral density for continuous time signals

The time average

T T
Arle] = 21T—/T [o]dt Als] = an?oole_/T [o]dt

time average and sample average operations

Poc = Jim P(T)|= lim 1/+TE[X2(t)} dt

T—w2T -T
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Measuring average power

power spectral density for continuous time signals

for deterministic and random signals

the average power P(T) for a deterministic signal x(t)

-
P(T) = 21T/+T 2(t)dt

the average power Pxx for a random process X(t)

'DXX = lim P( T)
T—oo

= lim 21_,_/+TE[X2(tﬂ dt
=A[E [X3(1)]]
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Power Spectral Density Sxx (@)

power spectral density for continuous time signals

the average power via power density

the average power Pxx for the random process X7 ()

1l E[Xr(0)P]
Poc=3z | | im =5 ¢

-k [ et

the Power Spectral Density (PSD) Sxx(®)
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Properties of Power Spectral Density

power spectral density for continuous time signals

® Sxx(w)>0

o Sxx(—) = Sxx () X(t) real
° Sxx(w) real

° 3z /77 Sxx(w)dw = A[E [X3(1)]]

o Sy () = ©2Sxx()

o &L [T Sxx(w)e/® dw = A[Rxx(t, t+17)]

° Sxx( ):fj:oA[Rxx(t,t-i-T)]e*j dt
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Equations involving Sxx (@)

power spectral density for continuous time signals

the average power Py, and the inverse Fourier transform of Sxx(®)

the average power related equation

;t/_:wSXX( )do = A[E [X*(t)]]

the autocorrelation related equation

+oo :
217r/ Sxx(w)e! dw = A[Rxx(t, t +7)]
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Average power related equation

power spectral density for continuous time signals

the average power Py,

the average power related equation
1 [t )
E/,w Sxx(0)dw = A[E [X?(1)]]

@ a random process X(t) in time domain

@ a random process X(®) in frequency domain

X(t) = lim Xr(t) X(w) = lim X7(o)

o Parseval’s theorem over X7 (1) <= Xr(®)
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Average power Pxx in time / frequency domain

power spectral density for continuous time signals

Average power Pxx using X7(t) and X7(w)

@ Using a random process X7(t) in time domain

. 1 T 7
PXX:Tl.anﬁ - E [X?(t)] dt

= lim i/'+m5[x2(t)} dt
T502T J U

= lim Ar [E [(X2(0)]] =| A[E [X3(1)]]

e Using a random process X7 () in frequency domain

1 g+l E[|X7(0)]
PXX_E/W im =7 i

=| 22/ oo
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Autocorrelation related equation
power spectral density for continuous time signals

the Inverse Fourier transform of Sxx(®)

the average power related equation

+oo :
% Sxx(w)e/ dw = A[Rxx(t, t +7)]

@ auto-correlation function
Rux(t,t47) = EX(OX(t+7)] = Rxx(7)

@ a random process X(t) in time domain

@ a random process X(®) in frequency domain
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PSD and Auto-correlation

power spectral density for continuous time signals

Fourier transform pairs

o A[Rxx(t,t+1)] < Sxx(®)

oo )
Sxx(©)= [ AlRxx(t,t+ D) e /"
1 [+ )
AlRxx(t,t+17)] = E/,m Sxx(0)el®do
® Rxx(7) <= Sxx(®)

poo )
Sxx( ):/_ Rxx(7)e " dt

1 [t Lo
RXX(T)=§[ Sxx(0)e™ do

for a WSS X(t), A[Rxx(t,t—l- T)] = Rxx(f)
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PSD and Auto-Correlation

power spectral density for continuous time signals

Sxx () and Rxx (1)
the power spectral density

oo .
Sxx( ):/ Rxx(f)eij tdt

the auto-correlation function

1 e :
RXX(T):E_/, Sxx( )e+f ‘do
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Fourier transform of a derivative function
power spectral density for continuous time signals

Fourier transform of -
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PSD and Auto-Correlation of a Derivative Function (1)

power spectral density for continuous time signals

Sy x(®) and Sxx(w)

2
Sex()= im ELTOR 5000 s xr(0)
2
Swlo= Jim SOy s vr(o)
2
:T”an EU;;( )” YT(t):XT(t)
= 0" 5xx(0) V(o) =0 Xr(0)
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PSD and Auto-Correlation of a Derivative Function (2)

power spectral density for continuous time signals

E [Xr(w)] and E [XT(w)}

Y(t) = Xr(t) = %Xr(t)

[Y(0)]? = Yr(0)Yi(0)
= (jo)X7(0)(—jo)XT(0)

= 0’| X(w)P?
2
Syy (@)= lim ! 2(7—)‘ ]
E[IX(w))?
Six(0)= Tlig;i“”( i
= 0" Sxx ()
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Fourier transforms of autocorrelation functions
power spectral density for continuous time signals

Fourier transform of an autocorrelation functions

oo :
Sxx( ):/_ Rxx(f)eij Tdt

Sxx( ):/_J:ORXX(T)ej fdt
+oo .
Sxx(0) = / Rxx(7)e % d

—oo
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Stationary Processes

N Gaussian random variables

first order stationary processes

mx(t) = E[X(t)] = X = constant

second order stationary processes

Rxx(t,t+ 1) = E[X(t)X(t+ )] = Rxx(7)
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RMS Bandwidth

power spectral density for continuous time signals

Definition

the standard deviation is
a measure of the spread in a density function.
the analogous quantity for the normalized power spectral density is
a measure of its spread that we call the rms bandwidth
(root-mean-square)

> f+°° 25xx( )dCO

—oo

Wrms - Foo
ffoo Sxx( )d(D
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RMS Bandwidth and Mean Frequency

power spectral density for continuous time signals

the mean frequence @g

J72 wSxx(w)dw
/72 Sxx(w)dw

@ =
the rms bandwidth

W2 :4ff:( — @)*Sxx(®)dw
me [12 Sxx(w)dw
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