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Joint Characteristic Function
two random variables

Definition
The joint characteristic function of two random variables X and Y
is given by

ΦX ,Y (ω1,ω2) = E
[
e jω1X+jω2Y

]
whereω1and ω2are real numbers. An equivalent form is

ΦX ,Y (ω1,ω2) =
∫

∞

−∞

∫
∞

−∞

fX ,Y (x ,y)e jω1x+jω2ydxdy
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Joint Characteristic Function and Fourier Transform
two random variables

Definition
the 2-dimension Fourier transform of fX ,Y (x ,y) when signs of
ω1andω2 are reversed

ΦX ,Y (ω1,ω2) =
∫

∞

−∞

∫
∞

−∞

fX ,Y (x ,y)e jω1x+jω2ydxdy

the inverse Fourier transform

fX ,Y (x ,y) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

ΦX ,Y (ω1,ω2)e−jω1x−jω2ydω1dω2
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Marginal Charateristic Functions
two random variables

Definition
Marginal characteristic functions are

ΦX (ω1) = ΦX ,Y (ω1,0) =
∫

∞

−∞

fX ,Y (x ,y)e jω1xdx

ΦY (ω) = ΦX ,Y (0,ω2) =
∫

∞

−∞

fX ,Y (x ,y)e jω2ydy
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Joint Moments
two random variables

Definition
Joint moments mnk can be found from ΦX ,Y (ω1,ω2)

mnk = (−1)n+k ∂ n+k

∂ωn
1 ∂ωk

2
ΦX ,Y (ω1,ω2)

∣∣
ω1=0,ω2=0

_
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Joint Characteristic Function
Nrandom variables

Definition
The joint characteristic function of N random variables
X1,X2, · · · ,XN is given by

ΦX1,··· ,XN
(ω1, · · · ,ωN) = E

[
e jω1X1+···+jωNXN

]
Joint moments are obtained from

mn1···nN = (−1)R
∂R

∂ω
n1
1 · · ·∂ω

nN
N

ΦX1,··· ,XN
(ω1, · · · ,ω2)

∣∣
all ωi=0

R = n1 +n2 + · · ·+nN
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