Node (H1)

Based on the codes from the book:

Artificial Intelligence : A Modern Approach

The copyrights of the codes belong to

Ravi Mohan, Peter Norvig, Stuart Russell, Ciaran O'Reilly

Copyright (c) 2015 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the

GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled "GNU Free Documentation License".

File: /home/young/Documents/aima-ja...ima/search/framework/Node.java Page 1 of 2
package aima.search. framework;
import java.util.List;
import aima.util.AbstractQueue;
/**
* @author Ravi Mohan
*
*/
/**
* Artificial Intelligence A Modern Approach (2nd Edition): page 69.
*
* There are many ways to represent nodes, but we will assume that a node is a
* data structure with five components:
*
* STATE: the state in the state space to which the node corresponds;
* PARENT-NODE: the node in the search tree that generated this node; ACTION:
* the action that was applied to the parent to generate the node; PATH-COST:
* the cost, traditionally denoted by g(n), of the path from the initial state
* to the node, as indicated by the parent pointers; and DEPTH: the number of
* steps along the path from the initial state.
*/
public class Node {
// STATE: the state in the state space to which the node corresponds;
private Object state; state
parent
// PARENT-NODE: the node in the search tree that generated this node; action
private Node parent; pathCost;
// ACTION: the action that was applied to the parent to generate the node; depth;
private String action; stepCost;

// PATH-COST: the cost, traditionally denoted by g(n), of the path from the

// initial state to

// the node, as indicated by the parent pointers;

Double pathCost;

// DEPTH: the number of steps along the path from the initial state.

private int depth;
private Double stepCost;

public Node(Object state) {
this.state = state;
this.depth = 0;
this.stepCost
this.pathCost

new Double(0);
new Double(0);

public Node(Node parent, Object state) {

this(state);
this.parent = parent;

this.depth = parent.getDepth() + 1;

public int getDepth() {
return depth;

}

public boolean isRootNode() {
return parent == null;

}

public Node getParent() {
return parent;

public List<Node> getPathFromRoot() {

File: /home/young/Documents/aima-ja...ima/search/framework/Node.java Page 2 of 2

Node current = this;

AbstractQueue queue = new AbstractQueue();

while (! (current.isRootNode())) {
queue.addToFront(current);
current = current.getParent();

}

queue.addToFront(current); // take care of root node

return queue.aslList();

public Object getState() {
return state;

public void setAction(String action) {
this.action = action;

public String getAction() {
return action;

public void setStepCost(Double stepCost) {
this.stepCost = stepCost;

public void addToPathCost(Double stepCost) {
this.pathCost = new Double(parent.pathCost.doubleValue()
+ stepCost.doubleValue());

}

/**
* @return Returns the pathCost.
*/
public double getPathCost() {
return pathCost.doubleValue();
}

/**
* @return Returns the stepCost.
*/
public double getStepCost() {
return stepCost.doubleValue();
}

@Override
public String toString() {

return getState().toString();
}

