Temperature Sensor (4A)

Temperature Sensor TypeTemperature Sensor Characteristics

Young Won Lim 9/24/09 Copyright (c) 2009 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Temperature Sensor Type – Physical Effect

Physical Effect	Temperature Sensor Type		Temp Range [°C]	
Electrical Resistance Changes	RTD (metal)		[-200,	+850]
	Thermistor (semiconductor)	NTC PTC CTR	[-50, [-50,	+300] +150]
Thermo-electric Effect			[-200.	+1600]
	Thermo-pile		[-40,	+100]
Semiconductor Characteristics	Diode Transistor		[-50,	+100]
Pyro-electric Effect	Pyro-electric IR Detection	-		

Principles of Operation (1)

Electrical Resistance Changes:

As temperature increases, resistance changes

- **RTD** (Resistance Temperature Detector) metal
- Thermistor (Thermal Resistor) semiconductor

Thermo-electric Effect:

- Two different kinds of metal used
- Temperature difference → Potential difference

Diode & Transistor Characteristics:

• With constant I, V is proportional to T (temperature)

Pryo-electric Effect:

generates a <u>temporary electrical potential</u>

when certain materials are <u>heated</u> or <u>cooled</u>

Principles of Operation (2)

RTD (Resistance Temperature Detector) – metal

- R is linearly modeled
- **α** : temperature coefficient of resistance (TCR)

Thermistor (Thermal Resistor) – semiconductor

• NTC (Negative Temperature Coefficient)

R decreases as T increases

• **PTC (Positive Temperature Coefficient)**

R increases as T increases

• **CRT (Critical Temperature Coefficient)**

R decreases abruptly as **T** increases to the critical temperature

Thermo-electricity:

- a temperature difference crates an electrical potential
- an electrical potential creates a temperature difference

Pyro-electricity:

- generates a temporary electrical potential when certain materials are heated or cooled
- the opposite effect is called electro-caloric effect

Principles of Operation (4)

Thermo-electricity:

Thermo-couple

- Seebeck EMF (Electro-Motive Force) Voltage
- Seebeck Coefficient linear coefficient

Thermo-pile

• Thermo-couples in series connection

RTD Sensor Types

Types	Temp Range [C]	Temp Coef	Characteristic
Pt	[-200, 640]		 The most stable If T<20K, bad sensitivity Influenced by magnetic field Accuracy Repeatability
Cu	[0, 120]		
Ni	[50, 300]	Large	

Magnetic Sensor

Material	Output Voltage	Temp Range	Usage	
NTC	Low Temp	[-100, 0]	In-rush current limiting device Automotive	
	Mid Temp	[-50, 300]		
	High Temp	[200, 700]		
PTC	Large	[-50, 150]	Constant Temperature Heating Thermal Switch (Cutoff)	
CTR		[0, 150]	Temperature Alarm	

IC Temperature Sensor

One Chip

- → Transistor Temperature Sensor
- + Amplification Circuit
- + Correction Cirucuit

References

- [1] http://en.wikipedia.org/[2] Nam Ki Min, Sensor Electronics, Dong-il Press