CTFT (2A)

Continuous Time Fourier Transform

Copyright (c) 2009 - 2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com .
This document was produced by using OpenOffice and Octave.
This accument was produced by asing open emice and octave.

Continuous Time Fourier Series

$$C_{\mathbf{k}} = \frac{1}{T} \int_{0}^{T} x(t) e^{-j\omega_{0}\mathbf{k}t} dt \qquad \longleftrightarrow \qquad x(t) = \sum_{\mathbf{k}=-\infty}^{+\infty} C_{\mathbf{k}} e^{+j\omega_{0}\mathbf{k}t}$$

Discrete Frequency - Aperiodic

Periodic Continuous Time Signal

Continuous Time Fourier Transform

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \quad \Longleftrightarrow \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Continuous Frequency - Aperiodic

Aperiodic Continuous Time Signal

Aperiodic Signal Conversion

From Summation to Integration

CTFS

$$C_{\mathbf{k}} = \frac{1}{T} \int_{0}^{T} x(t) e^{-j\omega_{0}\mathbf{k}t} dt$$

$$(x(t)) = \sum_{k=-\infty}^{+\infty} C_k e^{+j\omega_0 kt}$$

$$T_0 \rightarrow \infty$$
 $\omega = \left(\frac{2\pi}{T_0}\right) \rightarrow 0$

$$\omega_0 \to d \omega$$
, $k \omega_0 \to \omega$

$$X_{T_0}(t) \rightarrow X(t), \quad C_k T_0 \rightarrow X(j\omega)$$

$$x_{T_0}(t) = \sum_{k=-\infty}^{\infty} C_k e^{+jk\omega_0 t} \cdot \frac{2\pi}{2\pi} \cdot \frac{T_0}{T_0}$$
$$x_{T_0}(t) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} C_k T_0 e^{+jk\omega_0 t} \cdot \frac{2\pi}{T_0}$$

CTFT

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad \longleftrightarrow \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

From CTFS to CTFT

$$x_{T_0}(t) = \sum_{k=-\infty}^{+\infty} C_k e^{+j\omega_0 kt} \cdot 1$$

$$= \sum_{k=-\infty}^{+\infty} C_k e^{+j\omega_0 kt} \cdot \left(\frac{T_0}{2\pi}\right) \cdot \left(\frac{2\pi}{T_0}\right)$$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} C_k T_0 e^{+j\omega_0 kt} \cdot \left(\frac{2\pi}{T_0}\right)$$

$$x_{T_0}(t) = \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} C_k T_0 e^{+j\omega_0 kt} \cdot \omega_0$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

$$T_0 \to \infty$$
 $\omega = \left(\frac{2\pi}{T_0}\right) \to 0$ $\omega_0 \to d\omega$, $k\omega_0 \to \omega$ $\omega_0 \to d\omega$, $k\omega_0 \to \omega$

CTFT of Time Domain Impulse

Continuous Time Fourier <u>Transform</u>

$$x(t) = A\delta(t)$$
 \longrightarrow $X(j\omega) = A$

$$X(j\omega) = A$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

$$X(j\omega) = \int_{-\infty}^{+\infty} A \, \delta(t) e^{-j\omega t} dt$$
$$= \int_{-\infty}^{+\infty} A \, \delta(t) e^{0} dt$$
$$= A \int_{-\infty}^{+\infty} \delta(t) dt = A$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} A e^{+j\omega t} d\omega$$
$$= \frac{A}{2\pi} \int_{-\infty}^{+\infty} e^{+j\omega t} d\omega = A\delta(t)$$

CTFT of Frequency Domain Impulse

Continuous Time Fourier Transform

$$X(j\omega) = 2\pi \delta(\omega) \iff x(t) = 1$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 2\pi \, \delta(\omega) e^{+j\omega t} d\omega$$
$$= \int_{-\infty}^{+\infty} \delta(\omega) e^{0} d\omega = 1$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

$$X(j\omega) = \int_{-\infty}^{+\infty} e^{-j\omega t} dt = 2\pi \delta(\omega)$$

CTFS of Impulse Train

Continuous Time Fourier Series

$$C_{\mathbf{n}} = \frac{1}{T} \int_0^T x(t) e^{-j\mathbf{n}\omega_0 t} dt$$

$$x(t) = \sum_{n=0}^{\infty} C_n e^{+jn\omega_0 t}$$

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_s)$$

$$C_{n} = \frac{1}{T_{s}} \int_{-T_{s}/2}^{+T_{s}/2} \delta(t) e^{-jn\omega_{s}t} dt$$
$$= \frac{1}{T_{s}} \int_{-T_{s}/2}^{+T_{s}/2} \delta(t) dt = \frac{1}{T_{s}}$$

$$p(t) = \sum_{n=-\infty}^{+\infty} C_n e^{jn\omega_s t}$$
$$= \sum_{n=-\infty}^{+\infty} \frac{1}{T_s} e^{jn\omega_s t}$$

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{+\infty} \frac{1}{T_s} e^{jn\omega_s t}$$

CTFT of Impulse Train

Continuous Time Fourier <u>Transform</u>

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_s)$$

$$P(j\omega) = \int_{-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \delta(t - nT_s) e^{-jn\omega t} dt = \int_{-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \frac{1}{T_s} e^{jn\omega_s t} e^{-jn\omega t} dt$$

$$= \sum_{n=-\infty}^{+\infty} \frac{1}{T_s} \int_{-\infty}^{+\infty} e^{-j(\omega - n\omega_s)t} dt$$

$$= \sum_{n=-\infty}^{+\infty} \left(\frac{2\pi}{T_s} \right) \delta(\omega - n\omega_s)$$

$$X(\underline{j\,\omega}) = \int_{-\infty}^{+\infty} x(t) e^{-j\underline{\omega}t} dt$$

$$p(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \left(\frac{2\pi}{T_s} \right) \delta(\omega - n\omega_s) e^{+j\omega t} d\omega = \sum_{n=-\infty}^{+\infty} \frac{1}{T_s} \int_{-\infty}^{+\infty} \delta(\omega - n\omega_s) e^{+j\omega t} d\omega$$

$$= \sum_{n=-\infty}^{+\infty} \frac{1}{T_s} e^{jn\omega_s t} = \sum_{n=-\infty}^{+\infty} \delta(t - nT_s)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Other Convention

Continuous Time Fourier <u>Transform</u> {unitary, angular frequency}

$$X(j\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

$$x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Continuous Time Fourier Transform (non-unitary, angular frequency)

$$X(j\omega) = 1 \cdot \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad \Longleftrightarrow$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] M.J. Roberts, Fundamentals of Signals and Systems
- [4] S.J. Orfanidis, Introduction to Signal Processing
- [5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings