Path Delay

Copyright (c) 2011-2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Path Delay

Max-Path Min-Path Critical Path Timing Check False Path Multi-Cycle Path

Max Path / Min Path

4

Rise / Fall Times

Path Delay (4D)

Young Won Lim 3/25/16

PVT Variation

Process Voltage

Temperature

High temperatureMax delayLow temperaturemin delay

FF Output Delay

contamination delay

propagation delay

Path Delay

combinational logic delay

$$t_{cd} \leq t_{delay} \leq t_{pd}$$

min delay Max delay

Reg-to-Reg Delay (1)

Reg-to-Reg Delay (2)

Setup Time / Hold Time

Setup Time Violation

Hold Time OK

Hold Time Violation

Setup Time / Hold Time

Setup Time Violation

Adder Simulation Waveform

Glitches

False Path

Multi-Cycle Path

Verilog Timing Model Examples

Gate-level Modeling

Values are continuously driven by an output of a device

always active driving a 0, 1, x, z

not U0 (sb, s);	wire sb;
and U1 (<mark>a0</mark> , i0, sb),	wire a0;
U2 (<mark>a1</mark> , i1, s);	wire a1;
or U3 (z, a0, a1);	wire z;

Simulation with Delta Delays

When i0 changes

When s changes

Behavioral Modeling – Sequential

Path Delay (4D)

22

Parallel Processes

References

- [1] http://en.wikipedia.org/
- [2] http://www.allaboutcircuits.com/
- [3] W. Wolf, "Modern VLSI Design : Systems on Silicon
- [4] N. Weste, D. Harris, "CMOS VLSI Design: A Circuits and Systems Perspective"
- [5] J. P. Uyemura, "Introduction to VLSI Circuits and Systems"
- [6] https://en.wikiversity.org/wiki/The_necessities_in_SOC_Design
- [7] https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design
- [8] https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design
- [9] https://en.wikiversity.org/wiki/The_necessities_in_Computer_Architecture
- [10] https://en.wikiversity.org/wiki/The_necessities_in_Computer_Organization
- [11] https://en.wikiversity.org/wiki/Verilog_programming_in_plain_view