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Chapter 1

System on a chip

The AMD Geode is an x86 compatible system on a chip.

A system on a chip or system on chip (SoC or SOC)
is an integrated circuit (IC) that integrates all compo-
nents of a computer or other electronic system into a sin-
gle chip. It may contain digital, analog, mixed-signal,
and often radio-frequency functions—all on a single chip
substrate. SoCs are very common in the mobile electron-
ics market because of their low power consumption.!'! A
typical application is in the area of embedded systems.

The contrast with a microcontroller is one of degree. Mi-
crocontrollers typically have under 100 KB of RAM (of-
ten just a few kilobytes) and often really are single-chip-
systems, whereas the term SoC is typically used for more
powerful processors, capable of running software such
as the desktop versions of Windows and Linux, which
need external memory chips (flash, RAM) to be useful,
and which are used with various external peripherals. In
short, for larger systems, the term system on a chip is
hyperbole, indicating technical direction more than real-
ity: a high degree of chip integration, leading toward re-
duced manufacturing costs, and the production of smaller
systems. Many systems are too complex to fit on just one
chip built with a processor optimized for just one of the
system’s tasks.

When it is not feasible to construct a SoC for a particular

application, an alternative is a system in package (SiP)
comprising a number of chips in a single package. In
large volumes, SoC is believed to be more cost-effective
than SiP since it increases the yield of the fabrication and
because its packaging is simpler.[)

Another option, as seen for example in higher end cell
phones is package on package stacking during board as-
sembly. The SoC chip includes processors and numerous
digital peripherals, and comes in a ball grid package with
lower and upper connections. The lower balls connect to
the board and various peripherals, with the upper balls in
a ring holding the memory buses used to access NAND
flash and DDR2 RAM. Memory packages could come
from multiple vendors.

AMD Am286ZX/LX, SoC based on 80286

1.1 Structure

A typical SoC consists of':

e a microcontroller, microprocessor or digital sig-
nal processor (DSP) core — multiprocessor SoCs
(MPSoC) having more than one processor core
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e memory blocks including a selection of ROM,
RAM, EEPROM and flash memory

e timing sources including oscillators and phase-
locked loops

e peripherals including counter-timers, real-time

timers and power-on reset generators

e external interfaces, including industry standards
such as USB, FireWire, Ethernet, USART, SPI

o analog interfaces including ADCs and DACs

e voltage regulators and power management circuits

A bus — either proprietary or industry-standard such as
the AMBA bus from ARM Holdings — connects these
blocks. DMA controllers route data directly between ex-
ternal interfaces and memory, bypassing the processor
core and thereby increasing the data throughput of the
SoC.

1.2 Design flow

A SoC consists of both the hardware, described
above, and the software controlling the microcontroller,
microprocessor or DSP cores, peripherals and interfaces.
The design flow for a SoC aims to develop this hardware
and software in parallel.

Most SoCs are developed from pre-qualified hardware
blocks for the hardware elements described above, to-
gether with the software drivers that control their op-
eration. Of particular importance are the protocol
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System-on-a-chip design flow

stacks that drive industry-standard interfaces like USB.
The hardware blocks are put together using CAD tools;
the software modules are integrated using a software-
development environment.

Chips are verified for logical correctness before be-
ing sent to foundry. This process is called functional
verification and it accounts for a significant portion
of the time and energy expended in the chip design
life cycle (although the often quoted figure of 70% is
probably an exaggeration).’l With the growing com-
plexity of chips, hardware verification languages like
SystemVerilog, SystemC, e, and OpenVera are being
used. Bugs found in the verification stage are reported
to the designer.

Traditionally, engineers have employed simulation accel-
eration, emulation and/or an FPGA prototype to verify
and debug both hardware and software for SoC designs
prior to tapeout. With high capacity and fast compila-
tion time, acceleration and emulation are powerful tech-
nologies that provide wide visibility into systems. Both
technologies, however, operate slowly, on the order of
MHz, which may be significantly slower —up to 100 times
slower — than the SoC’s operating frequency. Accelera-
tion and emulation boxes are also very large and expen-
sive at over US$1,000,000.

FPGA prototypes, in contrast, use FPGAs directly to en-
able engineers to validate and test at, or close to, a sys-
tem’s full operating frequency with real-world stimuli.
Tools such as Certus™! are used to insert probes in the
FPGA RTL that make signals available for observation.
This is used to debug hardware, firmware and software
interactions across multiple FPGAs with capabilities sim-
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ilar to a logic analyzer.

Once the hardware of the SoC is debugged, the place-
and-route phase of the design of an integrated circuit or
application-specific integrated circuit (ASIC) occurs be-
fore it is fabricated.

1.3 Fabrication

SoCs can be fabricated by several technologies, including:

e Full custom
e Standard cell

e Field-programmable gate array (FPGA)

SoC designs usually consume less power and have a lower
costand higher reliability than the multi-chip systems that
they replace. And with fewer packages in the system, as-
sembly costs are reduced as well.

However, like most VLSI designs, the total cost is higher
for one large chip than for the same functionality dis-
tributed over several smaller chips, because of lower
yields and higher non-recurring engineering costs.

1.4 Benchmarks

SoC research and development often compares many op-
tions. Benchmarks, such as COSMIC,5! are developed
to help such evaluations.

1.5 See also

List of system-on-a-chip suppliers
s PSoC

o FElectronic design automation

e Post-silicon validation

e Single-board computer

e Network on a chip

e Radio-on-a-chip

e ARM architecture

e Socionext
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Chapter 2

Microcontroller

The die from an Intel 8742, an 8-bit microcontroller that includes
a CPU running at 12 MHz, 128 bytes of RAM, 2048 bytes of
EPROM, and 1/0 in the same chip.

Two ATmega microcontrollers

A microcontroller is a small computer (SoC) on a sin-
gle integrated circuit containing a processor core, mem-
ory, and programmable input/output peripherals. Pro-
gram memory in the form of Ferroelectric RAM, NOR
flash or OTP ROM is also often included on chip, as well
as a typically small amount of RAM. Microcontrollers
are designed for embedded applications, in contrast to the
microprocessors used in personal computers or other gen-

eral purpose applications consisting of various discrete
chips.

Microcontrollers are used in automatically controlled
products and devices, such as automobile engine con-
trol systems, implantable medical devices, remote con-
trols, office machines, appliances, power tools, toys and
other embedded systems. By reducing the size and cost
compared to a design that uses a separate microproces-
sor, memory, and input/output devices, microcontrollers
make it economical to digitally control even more devices
and processes. Mixed signal microcontrollers are com-
mon, integrating analog components needed to control
non-digital electronic systems.

Some microcontrollers may use four-bit words and op-
erate at clock rate frequencies as low as 4 kHz, for
low power consumption (single-digit milliwatts or mi-
crowatts). They will generally have the ability to retain
functionality while waiting for an event such as a but-
ton press or other interrupt; power consumption while
sleeping (CPU clock and most peripherals off) may be
just nanowatts, making many of them well suited for long
lasting battery applications. Other microcontrollers may
serve performance-critical roles, where they may need to
act more like a digital signal processor (DSP), with higher
clock speeds and power consumption.

2.1 History

The first microprocessor was the 4-bit Intel 4004 released
in 1971, with the Intel 8008 and other more capable mi-
croprocessors becoming available over the next several
years. However, both processors required external chips
to implement a working system, raising total system cost,
and making it impossible to economically computerize
appliances.

The Smithsonian Institution credits TI engineers Gary
Boone and Michael Cochran with the successful cre-
ation of the first microcontroller in 1971. The result of
their work was the TMS 1000, which became commer-
cially available in 1974. It combined read-only memory,
read/write memory, processor and clock on one chip and
was targeted at embedded systems.!)
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Partly in response to the existence of the single-chip TMS
1000,?! Intel developed a computer system on a chip
optimized for control applications, the Intel 8048, with
commercial parts first shipping in 1977.21 It combined
RAM and ROM on the same chip. This chip would find
its way into over one billion PC keyboards, and other nu-
merous applications. At that time Intel’s President, Luke
J. Valenter, stated that the microcontroller was one of the
most successful in the company’s history, and expanded
the division’s budget over 25%.

Most microcontrollers at this time had concurrent vari-
ants. One had an erasable EPROM program memory,
with a transparent quartz window in the lid of the pack-
age to allow it to be erased by exposure to ultraviolet light,
often used for prototyping. The other was either a mask
programmed ROM from the manufacturer for large se-
ries, or a PROM variant which was only programmable
once; sometimes this was signified with the designa-
tion OTP, standing for “one-time programmable”. The
PROM was of identical type of memory as the EPROM,
but because there was no way to expose it to ultravio-
let light, it could not be erased. The erasable versions
required ceramic packages with quartz windows, mak-
ing them significantly more expensive than the OTP ver-
sions, which could be made in lower-cost opaque plastic
packages. For the erasable variants, quartz was required,
instead of less expensive glass, for its transparency to
ultraviolet—aglass is largely opaque to UV—but the main
cost differentiator was the ceramic package itself.

In 1993, the introduction of EEPROM memory al-
lowed microcontrollers (beginning with the Microchip
PIC16x84) to be electrically erased quickly without an
expensive package as required for EPROM, allowing
both rapid prototyping, and In System Programming.
(EEPROM technology had been available prior to this
time, but the earlier EEPROM was more expensive and
less durable, making it unsuitable for low-cost mass-
produced microcontrollers.) The same year, Atmel in-
troduced the first microcontroller using Flash memory,
a special type of EEPROM.B! Other companies rapidly
followed suit, with both memory types.

Cost has plummeted over time, with the cheapest 8-bit
microcontrollers being available for under 0.25 USD in
quantity (thousands) in 2009, and some 32-bit microcon-
trollers around US$1 for similar quantities.

Nowadays microcontrollers are cheap and readily avail-
able for hobbyists, with large online communities around
certain processors.

In the future, MRAM could potentially be used in micro-
controllers as it has infinite endurance and its incremental
semiconductor wafer process cost is relatively low.

2.1.1 Volumes

In 2002, about 55% of all CPUs sold in the world were
8-bit microcontrollers and microprocessors. Over two
billion 8-bit microcontrollers were sold in 1997, and
according to Semico, over four billion 8-bit microcon-
trollers were sold in 2006./°! More recently, Semico has
claimed the MCU market grew 36.5% in 2010 and 12%
in2011.17

A typical home in a developed country is likely to have
only four general-purpose microprocessors but around
three dozen microcontrollers. A typical mid-range au-
tomobile has as many as 30 or more microcontrollers.
They can also be found in many electrical devices such
as washing machines, microwave ovens, and telephones.

Historically, the 8-bit segment has domi-
nated the MCU market [..] 16-bit microcon-
trollers became the largest volume MCU cate-
gory in 2011, overtaking 8-bit devices for the
first time that year [..] IC Insights believes the
makeup of the MCU market will undergo sub-
stantial changes in the next five years with 32-
bit devices steadily grabbing a greater share of
sales and unit volumes. By 2017, 32-bit MCUs
are expected to account for 55% of microcon-
troller sales [..] In terms of unit volumes, 32-bit
MCUs are expected account for 38% of mi-
crocontroller shipments in 2017, while 16-bit
devices will represent 34% of the total, and 4-
/8-bit designs are forecast to be 28% of units
sold that year.

The 32-bit MCU market is expected
to grow rapidly due to increasing demand
for higher levels of precision in embedded-
processing systems and the growth in connec-
tivity using the Internet. [..] In the next few
years, complex 32-bit MCUs are expected to
account for over 25% of the processing power
in vehicles.

— IC Insights, MCU Market on Migration
Path to 32-bit and ARM-based Devices!®!

In 2012, following a global crisis — a worst ever annual
sales decline and recovery and average sales price year-
over-year plunging 17% - the biggest reduction since
the 1980s, the average price for a microcontroller was
US$0.88 ($0.69 for 4-/8-bit, $0.59 for 16-bit, $1.76 for
32-bit).®!

In 2012, worldwide sales of 8-bit microcontrollers were
around $4 billion because they were so useful that many
companies needed them to be able to progress into bet-
ter technology. In 2012, 4-bit microcontrollers also see
significant sales.!”]

In 2015, 8-bit microcontrollers can be bought for $0.311
(1,000 units)," 16-bit for $0.385 (1,000 units),!'!) and



32-bit for $0.378 (1,000 units but at $0.35 for 5,000).[12]
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A PIC 18F8720 microcontroller in an 80-pin TOFP package.

2.2 Embedded design

A microcontroller can be considered a self-contained sys-
tem with a processor, memory and peripherals and can be
used as an embedded system.!3] The majority of micro-
controllers in use today are embedded in other machin-
ery, such as automobiles, telephones, appliances, and pe-
ripherals for computer systems.

While some embedded systems are very sophisticated,
many have minimal requirements for memory and pro-
gram length, with no operating system, and low software
complexity. Typical input and output devices include
switches, relays, solenoids, LEDs, small or custom liquid-
crystal displays, radio frequency devices, and sensors for
data such as temperature, humidity, light level etc. Em-
bedded systems usually have no keyboard, screen, disks,
printers, or other recognizable I/O devices of a personal
computer, and may lack human interaction devices of any
kind.

2.2.1 Interrupts

Micro controllers must provide real time (predictable,
though not necessarily fast) response to events in the em-
bedded system they are controlling. When certain events
occur, an interrupt system can signal the processor to sus-
pend processing the current instruction sequence and to
begin an interrupt service routine (ISR, or “interrupt han-
dler”). The ISR will perform any processing required
based on the source of the interrupt, before returning
to the original instruction sequence. Possible interrupt
sources are device dependent, and often include events
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such as an internal timer overflow, completing an ana-
log to digital conversion, a logic level change on an input
such as from a button being pressed, and data received
on a communication link. Where power consumption is
important as in battery operated devices, interrupts may
also wake a microcontroller from a low power sleep state
where the processor is halted until required to do some-
thing by a peripheral event.

2.2.2 Programs

Typically microcontroller programs must fit in the avail-
able on-chip program memory, since it would be costly
to provide a system with external, expandable, memory.
Compilers and assemblers are used to convert high-level
language and assembler language codes into a compact
machine code for storage in the microcontroller’s mem-
ory. Depending on the device, the program memory may
be permanent, read-only memory that can only be pro-
grammed at the factory, or program memory that may be
field-alterable flash or erasable read-only memory.

Manufacturers have often produced special versions of
their microcontrollers in order to help the hardware and
software development of the target system. Originally
these included EPROM versions that have a “window”
on the top of the device through which program memory
can be erased by ultraviolet light, ready for reprogram-
ming after a programming (“burn”) and test cycle. Since
1998, EPROM versions are rare and have been replaced
by EEPROM and flash, which are easier to use (can be
erased electronically) and cheaper to manufacture.

Other versions may be available where the ROM is ac-
cessed as an external device rather than as internal mem-
ory, however these are becoming increasingly rare due to
the widespread availability of cheap microcontroller pro-
grammers.

The use of field-programmable devices on a microcon-
troller may allow field update of the firmware or permit
late factory revisions to products that have been assem-
bled but not yet shipped. Programmable memory also
reduces the lead time required for deployment of a new
product.

Where hundreds of thousands of identical devices are
required, using parts programmed at the time of man-
ufacture can be an economical option. These "mask pro-
grammed" parts have the program laid down in the same
way as the logic of the chip, at the same time.

A customizable microcontroller incorporates a block of
digital logic that can be personalized in order to pro-
vide additional processing capability, peripherals and
interfaces that are adapted to the requirements of the ap-
plication. For example, the AT91CAP from Atmel has a
block of logic that can be customized during manufacture
according to user requirements.



2.3. HIGHER INTEGRATION

2.2.3 Other microcontroller features

Microcontrollers usually contain from several to dozens
of general purpose input/output pins (GPIO). GPIO pins
are software configurable to either an input or an output
state. When GPIO pins are configured to an input state,
they are often used to read sensors or external signals.
Configured to the output state, GPIO pins can drive ex-
ternal devices such as LEDs or motors, often indirectly,
through external power electronics.

Many embedded systems need to read sensors that pro-
duce analog signals. This is the purpose of the analog-
to-digital converter (ADC). Since processors are built to
interpret and process digital data, i.e. 1s and Os, they are
not able to do anything with the analog signals that may
be sent to it by a device. So the analog to digital con-
verter is used to convert the incoming data into a form
that the processor can recognize. A less common feature
on some microcontrollers is a digital-to-analog converter
(DAC) that allows the processor to output analog signals
or voltage levels.

In addition to the converters, many embedded micropro-
cessors include a variety of timers as well. One of the
most common types of timers is the Programmable In-
terval Timer (PIT). A PIT may either count down from
some value to zero, or up to the capacity of the count reg-
ister, overflowing to zero. Once it reaches zero, it sends
an interrupt to the processor indicating that it has finished
counting. This is useful for devices such as thermostats,
which periodically test the temperature around them to
see if they need to turn the air conditioner on, the heater
on, efc.

A dedicated Pulse Width Modulation (PWM) block
makes it possible for the CPU to control power convert-
ers, resistive loads, motors, etc., without using lots of
CPU resources in tight timer loops.

Universal Asynchronous Receiver/Transmitter (UART)
block makes it possible to receive and transmit data over a
serial line with very little load on the CPU. Dedicated on-
chip hardware also often includes capabilities to commu-
nicate with other devices (chips) in digital formats such as
Inter-Integrated Circuit (I2C), Serial Peripheral Interface
(SPI), Universal Serial Bus (USB), and Ethernet.!"¥

2.3 Higher integration

Micro-controllers may not implement an external address
or data bus as they integrate RAM and non-volatile mem-
ory on the same chip as the CPU. Using fewer pins, the
chip can be placed in a much smaller, cheaper package.

Integrating the memory and other peripherals on a single
chip and testing them as a unit increases the cost of that
chip, but often results in decreased net cost of the em-
bedded system as a whole. Even if the cost of a CPU that
has integrated peripherals is slightly more than the cost

Die of a PICI12C508 8-bit, fully static, EEPROM/EPROM/ROM-
based CMOS microcontroller manufactured by Microchip Tech-
nology using a 1200 nanometre process.

Die of a STM32F100C4T6B ARM Cortex-M3 microcontroller
with 16 kilobytes flash memory, 24 MHz Central Processing Unit
(CPU), motor control and Consumer Electronics Control (CEC)
Sfunctions. Manufactured by STMicroelectronics.

of a CPU and external peripherals, having fewer chips
typically allows a smaller and cheaper circuit board, and
reduces the labor required to assemble and test the circuit
board, in addition to tending to decrease the defect rate
for the finished assembly.

A micro-controller is a single integrated circuit, com-
monly with the following features:

e central processing unit - ranging from small and sim-
ple 4-bit processors to complex 32-bit or 64-bit pro-
CEessors



o volatile memory (RAM) for data storage

¢ ROM, FPROM, EEPROM or Flash memory for
program and operating parameter storage

e discrete input and output bits, allowing control or
detection of the logic state of an individual package
pin

o serial input/output such as serial ports (UARTS)

e other serial communications interfaces like I°C,
Serial Peripheral Interface and Controller Area Net-
work for system interconnect

e peripherals such as timers, event counters, PWM
generators, and watchdog

o clock generator - often an oscillator for a quartz tim-
ing crystal, resonator or RC circuit

e many include analog-to-digital converters, some in-
clude digital-to-analog converters

e in-circuit programming and in-circuit debugging
support

This integration drastically reduces the number of chips
and the amount of wiring and circuit board space that
would be needed to produce equivalent systems using sep-
arate chips. Furthermore, on low pin count devices in
particular, each pin may interface to several internal pe-
ripherals, with the pin function selected by software. This
allows a part to be used in a wider variety of applications
than if pins had dedicated functions.

Micro-controllers have proved to be highly popular in
embedded systems since their introduction in the 1970s.

Some microcontrollers use a Harvard architecture: sepa-
rate memory buses for instructions and data, allowing ac-
cesses to take place concurrently. Where a Harvard archi-
tecture is used, instruction words for the processor may
be a different bit size than the length of internal memory
and registers; for example: 12-bit instructions used with
8-bit data registers.

The decision of which peripheral to integrate is often dif-
ficult. The microcontroller vendors often trade operat-
ing frequencies and system design flexibility against time-
to-market requirements from their customers and over-
all lower system cost. Manufacturers have to balance the
need to minimize the chip size against additional func-
tionality.

Microcontroller architectures vary widely. Some designs
include general-purpose microprocessor cores, with one
or more ROM, RAM, or I/O functions integrated onto the
package. Other designs are purpose built for control ap-
plications. A micro-controller instruction set usually has
many instructions intended for bit manipulation (bit-wise
operations) to make control programs more compact.!!!
For example, a general purpose processor might require
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several instructions to test a bit in a register and branch if
the bit is set, where a micro-controller could have a single
instruction to provide that commonly required function.

Microcontrollers typically do not have a math coproces-
sor, so floating point arithmetic is performed by software.

2.4 Programming environments

Microcontrollers were originally programmed only in
assembly language, but various high-level programming
languages are now also in common use to target micro-
controllers. These languages are either designed specially
for the purpose, or versions of general purpose languages
such as the C programming language. Compilers for
general purpose languages will typically have some re-
strictions as well as enhancements to better support the
unique characteristics of microcontrollers. Some mi-
crocontrollers have environments to aid developing cer-
tain types of applications. Microcontroller vendors often
make tools freely available to make it easier to adopt their
hardware.

Many microcontrollers are so quirky that they effectively
require their own non-standard dialects of C, such as
SDCC for the 8051, which prevent using standard tools
(such as code libraries or static analysis tools) even for
code unrelated to hardware features. Interpreters are of-
ten used to hide such low level quirks.

Interpreter firmware is also available for some microcon-
trollers. For example, BASIC on the early microcon-
trollers Intel 8052;1¢] BASIC and FORTH on the Zilog
Z8'" as well as some modern devices. Typically these
interpreters support interactive programming.

Simulators are available for some microcontrollers.
These allow a developer to analyze what the behavior of
the microcontroller and their program should be if they
were using the actual part. A simulator will show the in-
ternal processor state and also that of the outputs, as well
as allowing input signals to be generated. While on the
one hand most simulators will be limited from being un-
able to simulate much other hardware in a system, they
can exercise conditions that may otherwise be hard to re-
produce at will in the physical implementation, and can
be the quickest way to debug and analyze problems.

Recent microcontrollers are often integrated with on-
chip debug circuitry that when accessed by an in-circuit
emulator via JTAG, allow debugging of the firmware with
a debugger. A real-time ICE may allow viewing and/or
manipulating of internal states while running. A tracing
ICE can record executed program and MCU states be-
fore/after a trigger point.
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2.5 Types of microcontrollers

See also: List of common microcontrollers

As of 2008, there are several dozen microcontroller ar-
chitectures and vendors including:

@ARM core processors (many vendors)

o ARM Cortex-M cores are specifically targeted
towards microcontroller applications

(e)Atmel AVR (8-bit), AVR32 (32-bit), and

AT91SAM (32-bit)

e Cypress Semiconductor's M8C Core used in their
PSoC (Programmable System-on-Chip)

e Freescale ColdFire (32-bit) and SO8 (8-bit)

e Freescale 68HC11 (8-bit), and others based on the
Motorola 6800 family

Intel 8051, also manufactured by NXP Semiconduc-
tors, Infineon and many others

e Infineon: 8-bit XCB800, 16-bit XE166, 32-
bit XMC4000 (ARM based Cortex MA4F),
32-bit TriCore and, 32-bit Aurix Tricore Bit
microcontrollers!®!

s MIPS

icrochip Technology PIC, (8-bit PIC16, PIC18,
16-bit dsPIC33 / PIC24), (32-bit PIC32)

e NXP Semiconductors LPC1000, LPC2000,
LPC3000, LPC4000 (32-bit), LPC900, LPC700
(8-bit)

Parallax Propeller

PowerPC ISE

Rabbit 2000 (8-bit)

Renesas Electronics: RL78 16-bit MCU; RX 32-bit
MCU; SuperH; V850 32-bit MCU; H8; R8C 16-bit
MCU

e Silicon Laboratories Pipelined 8-bit 8051 Micro-
controllers and mixed-signal ARM-based 32-bit mi-
crocontrollers

e STMicroelectronics STM8 (8-bit), ST10 (16-bit)
and STM32 (32-bit)

Texas Instruments TT MSP430 (16-bit), MSP432
(32-bit), C2000 (32-bit)

Toshiba TLCS-870 (8-bit/16-bit)

Many others exist, some of which are used in very narrow
range of applications or are more like applications proces-
sors than microcontrollers. The microcontroller market
is extremely fragmented, with numerous vendors, tech-
nologies, and markets. Note that many vendors sell or
have sold multiple architectures.

2.6 Interrupt latency

In contrast to general-purpose computers, microcon-
trollers used in embedded systems often seek to optimize
interrupt latency over instruction throughput. Issues in-
clude both reducing the latency, and making it be more
predictable (to support real-time control).

When an electronic device causes an interrupt, the inter-
mediate results (registers) have to be saved before the
software responsible for handling the interrupt can run.
They must also be restored after that software is finished.
If there are more registers, this saving and restoring pro-
cess takes more time, increasing the latency. Ways to
reduce such context/restore latency include having rela-
tively few registers in their central processing units (un-
desirable because it slows down most non-interrupt pro-
cessing substantially), or at least having the hardware not
save them all (this fails if the software then needs to com-
pensate by saving the rest “manually”). Another tech-
nique involves spending silicon gates on “shadow regis-
ters": One or more duplicate registers used only by the
interrupt software, perhaps supporting a dedicated stack.

Other factors affecting interrupt latency include:

e Cycles needed to complete current CPU activi-
ties. To minimize those costs, microcontrollers tend
to have short pipelines (often three instructions or
less), small write buffers, and ensure that longer in-
structions are continuable or restartable. RISC de-
sign principles ensure that most instructions take the
same number of cycles, helping avoid the need for
most such continuation/restart logic.

o The length of any critical section that needs to be
interrupted. Entry to a critical section restricts con-
current data structure access. When a data structure
must be accessed by an interrupt handler, the criti-
cal section must block that interrupt. Accordingly,
interrupt latency is increased by however long that
interrupt is blocked. When there are hard external
constraints on system latency, developers often need
tools to measure interrupt latencies and track down
which critical sections cause slowdowns.

e One common technique just blocks all inter-
rupts for the duration of the critical section.
This is easy to implement, but sometimes crit-
ical sections get uncomfortably long.

e A more complex technique just blocks the in-
terrupts that may trigger access to that data
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structure. This is often based on interrupt pri-
orities, which tend to not correspond well to
the relevant system data structures. Accord-
ingly, this technique is used mostly in very
constrained environments.

e Processors may have hardware support for
some critical sections. Examples include sup-
porting atomic access to bits or bytes within
a word, or other atomic access primitives like
the LDREX/STREX exclusive access primi-
tives introduced in the ARMv6 architecture.

e Interrupt nesting. Some microcontrollers allow
higher priority interrupts to interrupt lower prior-
ity ones. This allows software to manage latency
by giving time-critical interrupts higher priority (and
thus lower and more predictable latency) than less-
critical ones.

e Trigger rate. =~ When interrupts occur back-to-
back, microcontrollers may avoid an extra context
save/restore cycle by a form of tail call optimization.

Lower end microcontrollers tend to support fewer inter-
rupt latency controls than higher end ones.

2.7 Microcontroller embedded

memory technology

Since the emergence of microcontrollers, many different
memory technologies have been used. Almost all micro-
controllers have at least two different kinds of memory,
a non-volatile memory for storing firmware and a read-
write memory for temporary data.

2.7.1 Data

From the earliest microcontrollers to today, six-transistor
SRAM is almost always used as the read/write working
memory, with a few more transistors per bit used in the
register file. FRAM or MRAM could potentially replace
itas itis 4 to 10 times denser which would make it more
cost effective.

In addition to the SRAM, some microcontrollers also
have internal EEPROM for data storage; and even ones
that do not have any (or not enough) are often connected
to external serial EEPROM chip (such as the BASIC
Stamp) or external serial flash memory chip.

A few recent microcontrollers beginning in 2003 have
“self-programmable” flash memory.*!

2.7.2 Firmware

The earliest microcontrollers used mask ROM to store
firmware. Later microcontrollers (such as the early ver-
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sions of the Freescale 68HC11 and early PIC microcon-
trollers) had quartz windows that allowed ultraviolet light
in to erase the EPROM.

The Microchip PIC16C84, introduced in 1993, was
the first microcontroller to use EEPROM to store
firmware. In the same year, Atmel introduced the
first microcontroller using NOR Flash memory to store
firmware.?!

2.8 See also

e List of common microcontrollers

e List of open-source hardware projects
e Microbotics

¢ MCU with built in WiFi

e PIC microcontroller

e Programmable logic controller

e Single-board microcontroller
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Chapter 3

Microprocessor

See also: Processor (disambiguation), System on a chip,
Microcontroller and Digital signal processor
This article is about Microprocessors.
Processing Units, see CPU.

For Central

A microprocessor is a computer processor that incorpo-
rates the functions of a computer's central processing unit
(CPU) on a single integrated circuit (IC),!"! or at most a
few integrated circuits.’?! The microprocessor is a mul-
tipurpose, programmable device that accepts digital data
as input, processes it according to instructions stored in
its memory, and provides results as output. Micropro-
cessors contain both combinational logic and sequential
digital logic. Microprocessors operate on numbers and
symbols represented in the binary numeral system.

The integration of a whole CPU onto a single chip or on
a few chips greatly reduced the cost of processing power.
Integrated circuit processors are produced in large num-
bers by highly automated processes resulting in a low per
unit cost. Single-chip processors increase reliability as
there are many fewer electrical connections to fail. As
microprocessor designs get faster, the cost of manufac-
turing a chip (with smaller components built on a semi-
conductor chip the same size) generally stays the same.

Before microprocessors, small computers had been im-
plemented using racks of circuit boards with many
medium- and small-scale integrated circuits. Micro-
processors integrated this into one or a few large-scale
ICs. Continued increases in miCroprocessor capacity
have since rendered other forms of computers almost
completely obsolete (see history of computing hardware),
with one or more microprocessors used in everything
from the smallest embedded systems and handheld de-
vices to the largest mainframes and supercomputers.

3.1 Structure

The internal arrangement of a microprocessor varies de-
pending on the age of the design and the intended pur-
poses of the microprocessor. The complexity of an in-
tegrated circuit is bounded by physical limitations of the
number of transistors that can be put onto one chip, the
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A block diagram of the internal architecture of the Z80 micro-
processor, showing the arithmetic and logic section, register file,
control logic section, and buffers to external address and data
lines

number of package terminations that can connect the pro-
cessor to other parts of the system, the number of inter-
connections it is possible to make on the chip, and the heat
that the chip can dissipate. Advancing technology makes
more complex and powerful chips feasible to manufac-
ture.

A minimal hypothetical microprocessor might only in-
clude an arithmetic logic unit (ALU) and a control logic
section. The ALU performs operations such as addition,
subtraction, and operations such as AND or OR. Each op-
eration of the ALU sets one or more flags in a status reg-
ister, which indicate the results of the last operation (zero
value, negative number, overflow, or others). The control
logic retrieves instruction codes from memory and initi-
ates the sequence of operations required for the ALU to
carry out the instruction. A single operation code might
affect many individual data paths, registers, and other el-
ements of the processor.

As integrated circuit technology advanced, it was feasible
to manufacture more and more complex processors on a
single chip. The size of data objects became larger; al-
lowing more transistors on a chip allowed word sizes to in-
crease from 4- and 8-bit words up to today’s 64-bit words.
Additional features were added to the processor archi-
tecture; more on-chip registers sped up programs, and
complex instructions could be used to make more com-
pact programs. Floating-point arithmetic, for example,
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was often not available on 8-bit microprocessors, but had
to be carried out in software. Integration of the floating
point unit first as a separate integrated circuit and then
as part of the same microprocessor chip, sped up floating
point calculations.

Occasionally, physical limitations of integrated circuits
made such practices as a bit slice approach necessary. In-
stead of processing all of a long word on one integrated
circuit, multiple circuits in parallel processed subsets of
each data word. While this required extra logic to handle,
for example, carry and overflow within each slice, the re-
sult was a system that could handle, for example, 32-bit
words using integrated circuits with a capacity for only
four bits each.

With the ability to put large numbers of transistors on
one chip, it becomes feasible to integrate memory on the
same die as the processor. This CPU cache has the ad-
vantage of faster access than off-chip memory, and in-
creases the processing speed of the system for many ap-
plications. Processor clock frequency has increased more
rapidly than external memory speed, except in the recent
past, so cache memory is necessary if the processor is not
delayed by slower external memory.

3.1.1 Special-purpose designs

A microprocessor is a general purpose system. Several
specialized processing devices have followed from the
technology. Microcontrollers integrate a microproces-
sor with peripheral devices in embedded systems. A
digital signal processor (DSP) is specialized for signal
processing. Graphics processing units may have no lim-
ited or general programming facilities. For example,
GPUs through the 1990s were mostly non-programmable
and have only recently gained limited facilities like pro-
grammable vertex shaders.

32-bit processors have more digital logic than narrower
processors, so 32-bit (and wider) processors produce
more digital noise and have higher static consumption
than narrower processors.”’] Reducing digital noise im-
proves ADC conversion results.*I5] So, 8-bit or 16-bit
processors are better than 32-bit processors for system
on a chip and microcontrollers that require extremely
low-power electronics, or are part of a mixed-signal in-
tegrated circuit with noise-sensitive on-chip analog elec-
tronics such as high-resolution analog to digital convert-
ers, or both.

Nevertheless, trade-offs apply: running 32-bit arithmetic
on an 8-bit chip could end up using more power, as the
chip must execute software with multiple instructions.
Modern microprocessors go into low power states when
possible,'® and a 8-bit chip running 32-bit software is ac-
tive most of the time. This creates a delicate balance be-
tween software, hardware and use patterns, plus costs.

When manufactured on a similar process, 8-bit micro-
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processors use less power when operating and less power
when sleeping than 32-bit microprocessors.!

However, some people say a 32-bit microprocessor may
use less average power than an 8-bit microprocessor
when the application requires certain operations such as
floating-point math that take many more clock cycles on
an 8-bit microprocessor than a 32-bit microprocessor so
the 8-bit microprocessor spends more time in high-power
operating mode. 7181911101

3.2 Embedded applications

Thousands of items that were traditionally not computer-
related include microprocessors. These include large
and small household appliances, cars (and their accessory
equipment units), car keys, tools and test instruments,
toys, light switches/dimmers and electrical circuit break-
ers, smoke alarms, battery packs, and hi-fi audio/visual
components (from DVD players to phonograph turnta-
bles). Such products as cellular telephones, DVD video
system and HDTV broadcast systems fundamentally re-
quire consumer devices with powerful, low-cost, micro-
processors. Increasingly stringent pollution control stan-
dards effectively require automobile manufacturers to use
microprocessor engine management systems, to allow op-
timal control of emissions over widely varying operating
conditions of an automobile. Non-programmable con-
trols would require complex, bulky, or costly implemen-
tation to achieve the results possible with a microproces-
SOr.

A microprocessor control program (embedded software)
can be easily tailored to different needs of a product line,
allowing upgrades in performance with minimal redesign
of the product. Different features can be implemented in
different models of a product line at negligible production
cost.

Microprocessor control of a system can provide con-
trol strategies that would be impractical to implement
using electromechanical controls or purpose-built elec-
tronic controls. For example, an engine control system
in an automobile can adjust ignition timing based on en-
gine speed, load on the engine, ambient temperature, and
any observed tendency for knocking—allowing an auto-
mobile to operate on a range of fuel grades.

3.3 History

The advent of low-cost computers on integrated circuits
has transformed modern society. General-purpose mi-
croprocessors in personal computers are used for compu-
tation, text editing, multimedia display, and communica-
tion over the Internet. Many more microprocessors are
part of embedded systems, providing digital control over
myriad objects from appliances to automobiles to cellular
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phones and industrial process control.

The first use of the term “microprocessor” is attributed
to Viatron Computer Systems describing the custom in-
tegrated circuit used in their System 21 small computer
system announced in 1968.

By the late-1960s, designers were striving to integrate the
central processing unit (CPU) functions of a computer
onto a handful of MOS LSI chips, called microproces-
sor unit (MPU) chip sets. Building on 8-bit arithmetic
logic units (3800/3804) he designed earlier at Fairchild,
in 1969 Lee Boysel created the Four-Phase Systems Inc.
AL-1 an 8-bit CPU slice that was expandable to 32-bits.
In 1970, Steve Geller and Ray Holt of Garrett AiResearch
designed the MP944 chip set to implement the F-14A
Central Air Data Computer on six metal-gate chips fab-
ricated by AMI.

Intel introduced its first 4-bit microprocessor 4004 in
1971 and its 8-bit microprocessor 8008 in 1972. During
the 1960s, computer processors were constructed out of
small and medium-scale ICs—each containing from tens
of transistors to a few hundred. These were placed and
soldered onto printed circuit boards, and often multiple
boards were interconnected in a chassis. The large num-
ber of discrete logic gates used more electrical power—
and therefore produced more heat—than a more inte-
grated design with fewer ICs. The distance that signals
had to travel between ICs on the boards limited a com-
puter’s operating speed.

In the NASA Apollo space missions to the moon in the
1960s and 1970s, all onboard computations for primary
guidance, navigation and control were provided by a small
custom processor called “The Apollo Guidance Com-
puter”. It used wire wrap circuit boards whose only logic
elements were three-input NOR gates.['!)

The first microprocessors emerged in the early 1970s
and were used for electronic calculators, using binary-
coded decimal (BCD) arithmetic on 4-bit words. Other
embedded uses of 4-bit and 8-bit microprocessors, such
as terminals, printers, various kinds of automation etc.,
followed soon after. Affordable 8-bit microprocessors
with 16-bit addressing also led to the first general-purpose
microcomputers from the mid-1970s on.

Since the early 1970s, the increase in capacity of micro-
processors has followed Moore’s law; this originally sug-
gested that the number of components that can be fitted
onto a chip doubles every year. With present technology,
it is actually every two years,'?! and as such Moore later
changed the period to two years.!3]

3.3.1 First projects

Three projects delivered a microprocessor at about the
same time: Garrett AiResearch's Central Air Data Com-
puter (CADC), Texas Instruments (TI) TMS 1000 (1971
September), and Intel's 4004 (1971 November).
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CADC

For more details on this topic, see Central Air Data
Computer.

In 1968, Garrett AiResearch (which employed designers
Ray Holt and Steve Geller) was invited to produce a digi-
tal computer to compete with electromechanical systems
then under development for the main flight control com-
puter in the US Navy's new F-14 Tomcat fighter. The
design was complete by 1970, and used a MOS-based
chipset as the core CPU. The design was significantly
(approximately 20 times) smaller and much more reli-
able than the mechanical systems it competed against,
and was used in all of the early Tomcat models. This
system contained “a 20-bit, pipelined, parallel multi-
microprocessor”. The Navy refused to allow publication
of the design until 1997. For this reason the CADC,
and the MP944 chipset it used, are fairly unknown.['4!
Ray Holt graduated from California Polytechnic Univer-
sity in 1968, and began his computer design career with
the CADC. From its inception, it was shrouded in se-
crecy until 1998 when at Holt’s request, the US Navy al-
lowed the documents into the public domain. Since then
people have debated whether this was the first micropro-
cessor. Holt has stated that no one has compared this
microprocessor with those that came later.['! According
to Parab et al. (2007), “The scientific papers and litera-
ture published around 1971 reveal that the MP944 digi-
tal processor used for the F-14 Tomcat aircraft of the US
Navy qualifies as the first microprocessor. Although in-
teresting, it was not a single-chip processor, as was not
the Intel 4004 — they both were more like a set of parallel
building blocks yvou could use to make a general-purpose
form. It contains a CPU, RAM, ROM, and two other sup-
port chips like the Intel 4004. It was made from the same
P-channel technology, operated at military specifications
and had larger chips -- an excellent computer engineering
design by any standards. Its design indicates a major ad-
vance over Intel, and two vear earlier. It actually worked
and was flying in the F-14 when the Intel 4004 was an-
nounced. It indicates that today's industry theme of con-
verging DSP-microcontroller architectures was started in
1971.”1181 This convergence of DSP and microcontroller
architectures is known as a digital signal controller.!'”)

Four-Phase Systems AL1

The Four-Phase Systems AL1 was an 8-bit bit slice chip
containing eight registers and an ALU.!'8 It was designed
by Lee Boysel in 1969.[1911201211 At the time, it formed
part of a nine-chip, 24-bit CPU with three ALls, but it
was later called a microprocessor when, in response to
1990s litigation by Texas Instruments, a demonstration
system was constructed where a single AL1 formed part
of a courtroom demonstration computer system, together
with RAM, ROM, and an input-output device.??!
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ALI by Four-Phase Systems Inc: one from the earliest inventions
in the field of microprocessor technology

Pico/General Instrument

The PICO1/GI250 chip introduced in 1971. This was designed
by Pico Electronics (Glenrothes, Scotland ) and manufactured by
General Instrument of Hicksville NY.

In 1971, Pico Electronics™? and General Instrument (GI)
introduced their first collaboration in ICs, a complete sin-
gle chip calculator IC for the Monroe/Litton Royal Digi-
tal III calculator. This chip could also arguably lay claim
to be one of the first microprocessors or microcontrollers
having ROM, RAM and a RISC instruction set on-chip.
The layout for the four layers of the PMOS process was
hand drawn at x500 scale on mylar film, a significant task
at the time given the complexity of the chip.

Pico was a spinout by five GI design engineers whose
vision was to create single chip calculator ICs. They
had significant previous design experience on multiple
calculator chipsets with both GI and Marconi-Elliott.[>4
The key team members had originally been tasked by
Elliott Automation to create an 8-bit computer in MOS
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and had helped establish a MOS Research Laboratory in
Glenrothes, Scotland in 1967.

Calculators were becoming the largest single market for
semiconductors so Pico and GI went on to have sig-
nificant success in this burgeoning market. GI con-
tinued to innovate in microprocessors and microcon-
trollers with products including the CP1600, IOB1680
and PIC1650.151 In 1987 the GI Microelectronics busi-
ness was spun out into the Microchip PIC microcontroller
business.

Intel 4004

Main article: Intel 4004
The Intel 4004 is generally regarded as the first commer-

The 4004 with cover removed (left) and as actually used (right)

cially available microprocessor,?61(27l and cost US$60
($350.58 in 2016).281 The first known advertisement for
the 4004 is dated November 15, 1971 and appeared in
Electronic News.!?”) The project that produced the 4004
originated in 1969, when Busicom, a Japanese calcula-
tor manufacturer, asked Intel to build a chipset for high-
performance desktop calculators. Busicom’s original de-
sign called for a programmable chip set consisting of
seven different chips. Three of the chips were to make
a special-purpose CPU with its program stored in ROM
and its data stored in shift register read-write memory.
Ted Hoff, the Intel engineer assigned to evaluate the
project, believed the Busicom design could be simplified
by using dynamic RAM storage for data, rather than shift
register memory, and a more traditional general-purpose
CPU architecture. Hoff came up with a four-chip archi-
tectural proposal: a ROM chip for storing the programs, a
dynamic RAM chip for storing data, a simple I/O device
and a 4-bit central processing unit (CPU). Although not a
chip designer, he felt the CPU could be integrated into a
single chip, but as he lacked the technical know-how the
idea remained just a wish for the time being.

While the architecture and specifications of the MCS-4
came from the interaction of Hoff with Stanley Mazor,
a software engineer reporting to him, and with Busicom
engineer Masatoshi Shima, during 1969, Mazor and Hoff
moved on to other projects. In April 1970, Intel hired
Italian-born engineer Federico Faggin as project leader,
a move that ultimately made the single-chip CPU final
design a reality (Shima meanwhile designed the Busicom
calculator firmware and assisted Faggin during the first six
months of the implementation). Faggin, who originally
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Intel 4004, the first commercial microprocessor

developed the silicon gate technology (SGT) in 1968 at
Fairchild Semiconductor®” and designed the world’s first
commercial integrated circuit using SGT, the Fairchild
3708, had the correct background to lead the project into
what would become the first commercial general purpose
microprocessor. Since SGT was his very own invention,
Faggin also used it to create his new methodology for
random logic design that made it possible to implement a
single-chip CPU with the proper speed, power dissipation
and cost. The manager of Intel's MOS Design Depart-
ment was Leslie L. Vadész at the time of the MCS-4 de-
velopment but Vaddsz’s attention was completely focused
on the mainstream business of semiconductor memo-
ries so he left the leadership and the management of the
MCS-4 project to Faggin, who was ultimately responsible
for leading the 4004 project to its realization. Produc-
tion units of the 4004 were first delivered to Busicom in
March 1971 and shipped to other customers in late 1971.

Gilbert Hyatt

Gilbert Hyatt was awarded a patent claiming an in-
vention pre-dating both TI and Intel, describing a
“microcontroller”.®! The patent was later invalidated,
but not before substantial royalties were paid out.321533]

TMS 1000

The Smithsonian Institution says TI engineers Gary
Boone and Michael Cochran succeeded in creating the
first microcontroller (also called a microcomputer) and
the first single-chip CPU in 1971. The result of their
work was the TMS 1000, which went on the market in
1974.1341 TI stressed the 4-bit TMS 1000 for use in pre-
programmed embedded applications, introducing a ver-
sion called the TMS1802NC on September 17, 1971 that
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implemented a calculator on a chip.

TI filed for a patent on the microprocessor. Gary Boone
was awarded U.S. Patent 3,757,306 for the single-chip
microprocessor architecture on September 4, 1973. In
1971 and again in 1976, Intel and TI entered into broad
patent cross-licensing agreements, with Intel paying roy-
alties to TI for the microprocessor patent. A history of
these events is contained in court documentation from a
legal dispute between Cyrix and Intel, with TI as inventor
and owner of the microprocessor patent.

A computer-on-a-chip combines the microprocessor core
(CPU), memory, and I/O (input/output) lines onto one
chip. The computer-on-a-chip patent, called the “mi-
crocomputer patent” at the time, U.S. Patent 4,074,351,
was awarded to Gary Boone and Michael J. Cochran
of TI. Aside from this patent, the standard meaning of
microcomputer is a computer using one or more micro-
processors as its CPU(s), while the concept defined in the
patent is more akin to a microcontroller.

3.3.2 8-bit designs

The Intel 4004 was followed in 1972 by the Intel 8008,
the world’s first 8-bit microprocessor. The 8008 was not,
however, an extension of the 4004 design, but instead the
culmination of a separate design project at Intel, arising
from a contract with Computer Terminals Corporation,
of San Antonio TX, for a chip for a terminal they were
designing,?>! the Datapoint 2200—fundamental aspects
of the design came not from Intel but from CTC. In 1968,
CTC’s Vic Poor and Harry Pyle developed the original
design for the instruction set and operation of the pro-
cessor. In 1969, CTC contracted two companies, Intel
and Texas Instruments, to make a single-chip implemen-
tation, known as the CTC 1201.5¢! In late 1970 or early
1971, TI dropped out being unable to make a reliable
part. In 1970, with Intel yet to deliver the part, CTC
opted to use their own implementation in the Datapoint
2200, using traditional TTL logic instead (thus the first
machine to run “8008 code” was not in fact a micropro-
cessor at all and was delivered a year earlier). Intel’s ver-
sion of the 1201 microprocessor arrived in late 1971, but
was too late, slow, and required a number of additional
support chips. CTC had no interest in using it. CTC had
originally contracted Intel for the chip, and would have
owed them US$50,000 ($292,153 in 2016) for their de-
sign work.*¢] To avoid paying for a chip they did not want
(and could not use), CTC released Intel from their con-
tract and allowed them free use of the design.l*! Intel
marketed it as the 8008 in April, 1972, as the world's
first 8-bit microprocessor. It was the basis for the famous
"Mark-8" computer kit advertised in the magazine Radio-
Electronics in 1974. This processor had an 8-bit data bus
and a 14-bit address bus.”!

The 8008 was the precursor to the successful Intel 8080
(1974), which offered improved performance over the
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8008 and required fewer support chips. Federico Faggin
conceived and designed it using high voltage N channel
MOS. The Zilog Z80 (1976) was also a Faggin design, us-
ing low voltage N channel with depletion load and deriva-
tive Intel 8-bit processors: all designed with the method-
ology Faggin created for the 4004. Motorola released the
competing 6800 in August 1974, and the similar MOS
Technology 6502 in 1975 (both designed largely by the
same people). The 6502 family rivaled the Z80 in popu-
larity during the 1980s.

A low overall cost, small packaging, simple computer
bus requirements, and sometimes the integration of ex-
tra circuitry (e.g. the Z80’s built-in memory refresh
circuitry) allowed the home computer “revolution” to
accelerate sharply in the early 1980s. This delivered
such inexpensive machines as the Sinclair ZX-81, which
sold for US$99 ($257.68 in 2016). A variation of
the 6502, the MOS Technology 6510 was used in the
Commodore 64 and yet another variant, the 8502, pow-
ered the Commodore 128.

The Western Design Center, Inc (WDC) introduced the
CMOS 65C02 in 1982 and licensed the design to several
firms. It was used as the CPU in the Apple Ile and Ilc per-
sonal computers as well as in medical implantable grade
pacemakers and defibrillators, automotive, industrial and
consumer devices. WDC pioneered the licensing of mi-
croprocessor designs, later followed by ARM (32-bit) and
other microprocessor intellectual property (IP) providers
in the 1990s.

Motorola introduced the MC6809 in 1978. It was an
ambitious and well thought-through 8-bit design that was
source compatible with the 6800, and implemented using
purely hard-wired logic (subsequent 16-bit microproces-
sors typically used microcode to some extent, as CISC
design requirements were becoming too complex for pure
hard-wired logic).

Another early 8-bit microprocessor was the Signetics
2650, which enjoyed a brief surge of interest due to its
innovative and powerful instruction set architecture.

A seminal microprocessor in the world of spaceflight was
RCA's RCA 1802 (aka CDP1802, RCA COSMAC) (in-
troduced in 1976), which was used on board the Galileo
probe to Jupiter (launched 1989, arrived 1995). RCA
COSMAC was the first to implement CMOS technology.
The CDP1802 was used because it could be run at very
low power, and because a variant was available fabricated
using a special production process, silicon on sapphire
(SOS), which provided much better protection against
cosmic radiation and electrostatic discharge than that of
any other processor of the era. Thus, the SOS version of
the 1802 was said to be the first radiation-hardened mi-
CrOpIroCessor.

The RCA 1802 had what is called a static design, meaning
that the clock frequency could be made arbitrarily low,
even to 0 Hz, a total stop condition. This let the Galileo
spacecraft use minimum electric power for long unevent-
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ful stretches of a voyage. Timers or sensors would awaken
the processor in time for important tasks, such as naviga-
tion updates, attitude control, data acquisition, and radio
communication. Current versions of the Western Design
Center 65C02 and 65C816 have static cores, and thus re-
tain data even when the clock is completely halted.

3.3.3 12-bit designs

The Intersil 6100 family consisted of a 12-bit micropro-
cessor (the 6100) and a range of peripheral support and
memory ICs. The microprocessor recognised the DEC
PDP-8 minicomputer instruction set. As such it was
sometimes referred to as the CMOS-PDP8. Since it was
also produced by Harris Corporation, it was also known as
the Harris HM-6100. By virtue of its CMOS technology
and associated benefits, the 6100 was being incorporated
into some military designs until the early 1980s.

3.3.4 16-bit designs

The first multi-chip 16-bit microprocessor was the
National Semiconductor IMP-16, introduced in early
1973. An 8-bit version of the chipset was introduced in
1974 as the IMP-8.

Other early multi-chip 16-bit microprocessors include
one that Digital Equipment Corporation (DEC) used in
the LSI-11 OEM board set and the packaged PDP 11/03
minicomputer—and the Fairchild Semiconductor Mi-
croFlame 9440, both introduced in 1975-76. In 1975,
National introduced the first 16-bit single-chip micropro-
cessor, the National Semiconductor PACE, which was
later followed by an NMOS version, the INS8900.

Another early single-chip 16-bit microprocessor was TT's
TMS 9900, which was also compatible with their TI-990
line of minicomputers. The 9900 was used in the TI
990/4 minicomputer, the TI-99/4A home computer, and
the TM990 line of OEM microcomputer boards. The
chip was packaged in a large ceramic 64-pin DIP pack-
age, while most 8-bit microprocessors such as the Intel
8080 used the more common, smaller, and less expensive
plastic 40-pin DIP. A follow-on chip, the TMS 9980, was
designed to compete with the Intel 8080, had the full TI
990 16-bit instruction set, used a plastic 40-pin package,
moved data 8 bits at a time, but could only address 16
KB. A third chip, the TMS 9995, was a new design. The
family later expanded to include the 99105 and 99110.

The Western Design Center (WDC) introduced the
CMOS 65816 16-bit upgrade of the WDC CMOS 65C02
in 1984. The 65816 16-bit microprocessor was the core
of the Apple IIgs and later the Super Nintendo Entertain-
ment System, making it one of the most popular 16-bit
designs of all time.

Intel “upsized” their 8080 design into the 16-bit Intel
8086, the first member of the x86 family, which powers
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most modern PC type computers. Intel introduced the
8086 as a cost-effective way of porting software from the
8080 lines, and succeeded in winning much business on
that premise. The 8088, a version of the 8086 that used
an 8-bit external data bus, was the microprocessor in the
first IBM PC. Intel then released the 80186 and 80188,
the 80286 and, in 1985, the 32-bit 80386, cementing
their PC market dominance with the processor family’s
backwards compatibility. The 80186 and 80188 were es-
sentially versions of the 8086 and 8088, enhanced with
some onboard peripherals and a few new instructions. Al-
though Intel’s 80186 and 80188 were not used in IBM
PC type designs, second source versions from NEC, the
V20 and V30 frequently were. The 8086 and successors
had an innovative but limited method of memory segmen-
tation, while the 80286 introduced a full-featured seg-
mented memory management unit (MMU). The 80386
introduced a flat 32-bit memory model with paged mem-
ory management.

The 16-bit Intel x86 processors up to and including
the 80386 do not include floating-point units (FPUs).
Intel introduced the 8087, 80187, 80287 and 80387
math coprocessors to add hardware floating-point and
transcendental function capabilities to the 8086 through
80386 CPUs. The 8087 works with the 8086/8088 and
80186/80188,%% the 80187 works with the 80186 but
not the 80188,%%) the 80287 works with the 80286 and
the 80387 works with the 80386. The combination of an
x86 CPU and an x87 coprocessor forms a single multi-
chip microprocessor; the two chips are programmed as
a unit using a single integrated instruction set.’! The
8087 and 80187 coprocessors are connected in parallel
with the data and address buses of their parent proces-
sor and directly execute instructions intended for them.
The 80287 and 80387 coprocessors are interfaced to the
CPU through I/O ports in the CPU’s address space, this is
transparent to the program, which does not need to know
about or access these I/O ports directly; the program ac-
cesses the coprocessor and its registers through normal
instruction opcodes.

3.3.5 32-bit designs

16-bit designs had only been on the market briefly when
32-bit implementations started to appear.

The most significant of the 32-bit designs is the Motorola
MC68000, introduced in 1979. The 68k, as it was widely
known, had 32-bit registers in its programming model
but used 16-bit internal data paths, three 16-bit Arith-
metic Logic Units, and a 16-bit external data bus (to re-
duce pin count), and externally supported only 24-bit ad-
dresses (internally it worked with full 32 bit addresses).
In PC-based IBM-compatible mainframes the MC68000
internal microcode was modified to emulate the 32-bit
System/370 IBM mainframe."! Motorola generally de-
scribed it as a 16-bit processor. The combination of high
performance, large (16 megabytes or 22* bytes) memory
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Upper interconnect layers on an Intel 80486 DX2 die

space and fairly low cost made it the most popular CPU
design of its class. The Apple Lisa and Macintosh designs
made use of the 68000, as did a host of other designs in
the mid-1980s, including the Atari ST and Commodore
Amiga.

The world’s first single-chip fully 32-bit microprocessor,
with 32-bit data paths, 32-bit buses, and 32-bit addresses,
was the AT&T Bell Labs BELLMAC-32A, with first
samples in 1980, and general production in 1982.[421(43]
After the divestiture of AT&T in 1984, it was renamed
the WE 32000 (WE for Western Electric), and had two
follow-on generations, the WE 32100 and WE 32200.
These microprocessors were used in the AT&T 3B5 and
3B15 minicomputers; in the 3B2, the world’s first desktop
super microcomputer; in the “Companion”, the world’s
first 32-bit laptop computer; and in “Alexander”, the
world’s first book-sized super microcomputer, featuring
ROM-pack memory cartridges similar to today’s gaming
consoles. All these systems ran the UNIX System V op-
erating system.

The first commercial, single chip, fully 32-bit micropro-
cessor available on the market was the HP FOCUS.

Intel's first 32-bit microprocessor was the iAPX 432,
which was introduced in 1981, but was not a commer-
cial success. It had an advanced capability-based object-
oriented architecture, but poor performance compared
to contemporary architectures such as Intel’s own 80286
(introduced 1982), which was almost four times as fast
on typical benchmark tests. However, the results for the
1APX432 was partly due to a rushed and therefore sub-
optimal Ada compiler.

Motorola’s success with the 68000 led to the MC68010,
which added virtual memory support. The MC68020,
introduced in 1984 added full 32-bit data and address
buses. The 68020 became hugely popular in the Unix
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supermicrocomputer market, and many small companies
(e.g., Altos, Charles River Data Systems, Cromemco)
produced desktop-size systems. The MC68030 was in-
troduced next, improving upon the previous design by in-
tegrating the MMU into the chip. The continued success
led to the MC68040, which included an FPU for better
math performance. A 68050 failed to achieve its per-
formance goals and was not released, and the follow-up
MC68060 was released into a market saturated by much
faster RISC designs. The 68k family faded from use in
the early 1990s.

Other large companies designed the 68020 and follow-
ons into embedded equipment. At one point, there were
more 68020s in embedded equipment than there were
Intel Pentiums in PCs.[*l The ColdFire processor cores
are derivatives of the venerable 63020.

During this time (early to mid-1980s), National Semi-
conductor introduced a very similar 16-bit pinout, 32-
bit internal microprocessor called the NS 16032 (later
renamed 32016), the full 32-bit version named the NS
32032. Later, National Semiconductor produced the NS
32132, which allowed two CPUs to reside on the same
memory bus with built in arbitration. The NS32016/32
outperformed the MC68000/10, but the NS32332—
which arrived at approximately the same time as the
MC68020—did not have enough performance. The third
generation chip, the NS32532, was different. It had
about double the performance of the MC68030, which
was released around the same time. The appearance of
RISC processors like the AM29000 and MC88000 (now
both dead) influenced the architecture of the final core,
the NS32764. Technically advanced—with a superscalar
RISC core, 64-bit bus, and internally overclocked—it
could still execute Series 32000 instructions through real-
time translation.

When National Semiconductor decided to leave the Unix
market, the chip was redesigned into the Swordfish Em-
bedded processor with a set of on chip peripherals. The
chip turned out to be too expensive for the laser printer
market and was killed. The design team went to Intel and
there designed the Pentium processor, which is very sim-
ilar to the NS32764 core internally. The big success of
the Series 32000 was in the laser printer market, where
the NS32CG16 with microcoded BitBlt instructions had
very good price/performance and was adopted by large
companies like Canon. By the mid-1980s, Sequent intro-
duced the first SMP server-class computer using the NS
32032. This was one of the design’s few wins, and it dis-
appeared in the late 1980s. The MIPS R2000 (1984) and
R3000 (1989) were highly successful 32-bit RISC micro-
processors. They were used in high-end workstations and
servers by SGI, among others. Other designs included the
Zilog 280000, which arrived too late to market to stand
a chance and disappeared quickly.

The ARM first appeared in 1985.[) This is a RISC pro-
cessor design, which has since come to dominate the 32-
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bit embedded systems processor space due in large part
to its power efficiency, its licensing model, and its wide
selection of system development tools. Semiconductor
manufacturers generally license cores and integrate them
into their own system on a chip products; only a few such
vendors are licensed to modify the ARM cores. Most
cell phones include an ARM processor, as do a wide vari-
ety of other products. There are microcontroller-oriented
ARM cores without virtual memory support, as well as
symmetric multiprocessor (SMP) applications processors
with virtual memory.

From 1993 to 2003, the 32-bit x86 architectures became
increasingly dominant in desktop, laptop, and server mar-
kets, and these microprocessors became faster and more
capable. Intel had licensed early versions of the archi-
tecture to other companies, but declined to license the
Pentium, so AMD and Cyrix built later versions of the
architecture based on their own designs. During this
span, these processors increased in complexity (transis-
tor count) and capability (instructions/second) by at least
three orders of magnitude. Intel’s Pentium line is prob-
ably the most famous and recognizable 32-bit processor
model, at least with the public at broad.

3.3.6 64-bit designs in personal computers

While 64-bit microprocessor designs have been in use
in several markets since the early 1990s (including the
Nintendo 64 gaming console in 1996), the early 2000s
saw the introduction of 64-bit microprocessors targeted
at the PC market.

With AMD’s introduction of a 64-bit architecture
backwards-compatible with x86, x86-64 (also called
AMD64), in September 2003, followed by Intel’s near
fully compatible 64-bit extensions (first called IA-32e
or EM64T, later renamed Intel 64), the 64-bit desktop
era began. Both versions can run 32-bit legacy appli-
cations without any performance penalty as well as new
64-bit software. With operating systems Windows XP
x64, Windows Vista x64, Windows 7 x64, Linux, BSD,
and Mac OS X that run 64-bit native, the software is also
geared to fully utilize the capabilities of such processors.
The move to 64 bits is more than just an increase in reg-
ister size from the IA-32 as it also doubles the number of
general-purpose registers.

The move to 64 bits by PowerPC processors had been in-
tended since the processors’ design in the early 90s and
was not a major cause of incompatibility. Existing in-
teger registers are extended as are all related data path-
ways, but, as was the case with IA-32, both floating point
and vector units had been operating at or above 64 bits
for several years. Unlike what happened when IA-32
was extended to x86-64, no new general purpose regis-
ters were added in 64-bit PowerPC, so any performance
gained when using the 64-bit mode for applications mak-
ing no use of the larger address space is minimal.
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In 2011, ARM introduced a new 64-bit ARM architec-
ture.

3.3.7 RISC

Main article: Reduced instruction set computing

In the mid-1980s to early 1990s, a crop of new high-
performance reduced instruction set computer (RISC)
microprocessors appeared, influenced by discrete RISC-
like CPU designs such as the IBM 801 and others. RISC
microprocessors were initially used in special-purpose
machines and Unix workstations, but then gained wide
acceptance in other roles.

In 1986, HP released its first system with a PA-RISC
CPU. The first commercial RISC microprocessor design
was released in 1984 by MIPS Computer Systems, the
32-bit R2000 (the R1000 was not released). In 1987 in
the non-Unix Acorn computers' 32-bit, then cache-less,
ARM2-based Acorn Archimedes became the first com-
mercial success using the ARM architecture, then known
as Acorn RISC Machine (ARM); first silicon ARMI1 in
1985. The R3000 made the design truly practical, and the
R4000 introduced the world’s first commercially available
64-bit RISC microprocessor. Competing projects would
result in the IBM POWER and Sun SPARC architectures.
Soon every major vendor was releasing a RISC design, in-
cluding the AT&T CRISP, AMD 29000, Intel i860 and
Intel 1960, Motorola 88000, DEC Alpha.

In the late 1990s, only two 64-bit RISC architectures
were still produced in volume for non-embedded appli-
cations: SPARC and Power ISA, but as ARM has be-
come increasingly powerful, in the early 2010s, it became
the third RISC architecture in the general computing seg-
ment.

3.3.8 Multi-core designs

Main article: Multi-core processor

A different approach to improving a computer’s perfor-
mance is to add extra processors, as in symmetric multi-
processing designs, which have been popular in servers
and workstations since the early 1990s. Keeping up
with Moore’s Law is becoming increasingly challenging
as chip-making technologies approach their physical lim-
its. In response, microprocessor manufacturers look for
other ways to improve performance so they can maintain
the momentum of constant upgrades.

A multi-core processor is a single chip that contains more
than one microprocessor core. Each core can simultane-
ously execute processor instructions in parallel. This ef-
fectively multiplies the processor’s potential performance
by the number of cores, if the software is designed to take
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advantage of more than one processor core. Some com-
ponents, such as bus interface and cache, may be shared
between cores. Because the cores are physically close
to each other, they can communicate with each other
much faster than separate (off-chip) processors in a mul-
tiprocessor system, which improves overall system per-
formance.

In 2005, AMD released the first native dual-core proces-
sor, the Athlon X2. Intel’s Pentium D had beaten the X2
to market by a few weeks, but it used two separate CPU
dies and was less efficient than AMD’s native design.
As of 2012, dual- and quad-core processors are widely
used in home PCs and laptops, while quad-, six-, eight-,
ten-, twelve-, and sixteen-core processors are common in
the professional and enterprise markets with workstations
and servers.

Sun Microsystems has released the Niagara and Niagara
2 chips, both of which feature an eight-core design. The
Niagara 2 supports more threads and operates at 1.6 GHz.

High-end Intel Xeon processors that are on the LGA 771,
LGA 1366, and LGA 2011 sockets and high-end AMD
Opteron processors that are on the C32 and G34 sockets
are DP (dual processor) capable, as well as the older Intel
Core 2 Extreme QX9775 also used in an older Mac Pro by
Apple and the Intel Skulltrail motherboard. AMD’s G34
motherboards can support up to four CPUs and Intel's
LGA 1567 motherboards can support up to eight CPUs.

Modern desktop computers support systems with multi-
ple CPUs, but few applications outside of the professional
market can make good use of more than four cores. Both
Intel and AMD currently offer fast quad, hex and octa-
core desktop CPUs, making multi-CPU systems obsolete
for many purposes. The desktop market has been in a
transition towards quad-core CPUs since Intel's Core 2
Quad was released and are now common, although dual-
core CPUs are still more prevalent. Older or mobile com-
puters are less likely to have more than two cores than
newer desktops. Not all software is optimised for multi-
core CPUs, making fewer, more powerful cores prefer-
able.

AMD offers CPUs with more cores for a given amount of
money than similarly priced Intel CPUs—but the AMD
cores are somewhat slower, so the two trade blows in
different applications depending on how well-threaded
the programs running are. For example, Intel’s cheapest
Sandy Bridge quad-core CPUs often cost almost twice
as much as AMD?’s cheapest Athlon II, Phenom II, and
FX quad-core CPUs but Intel has dual-core CPUs in the
same price ranges as AMD’s cheaper quad-core CPUs.
In an application that uses one or two threads, the In-
tel dual-core CPUs outperform AMD’s similarly priced
quad-core CPUs—and if a program supports three or
four threads the cheap AMD quad-core CPUs outper-
form the similarly priced Intel dual-core CPUs.

Historically, AMD and Intel have switched places as the
company with the fastest CPU several times. Intel cur-
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rently leads on the desktop side of the computer CPU
market, with their Sandy Bridge and Ivy Bridge series.
In servers, AMD’s new Opterons seem to have superior
performance for their price point. This means that AMD
are currently more competitive in low- to mid-end servers
and workstations that more effectively use fewer cores
and threads.

3.4 Market statistics

In 1997, about 55% of all CPUs sold in the world are 8-bit
microcontrollers, over two billion of which were sold.[46]

In 2002, less than 10% of all the CPUs sold in the world
were 32-bit or more. Of all the 32-bit CPUs sold, about
2% are used in desktop or laptop personal computers.
Most microprocessors are used in embedded control ap-
plications such as household appliances, automobiles, and
computer peripherals. Taken as a whole, the average
price for a microprocessor, microcontroller, or DSP is
just over US$S6 ($7.89 in 2016).17)

In 2003, about US$44 ($56.6 in 2016) billion worth
of microprocessors were manufactured and sold.[*¥1 Al-
though about half of that money was spent on CPUs used
in desktop or laptop personal computers, those count for
only about 2% of all CPUs sold.[*" The quality-adjusted
price of laptop microprocessors improved —25% to
—35% per year in 2004-10, and the rate of improvement
slowed to —15% to —25% per year in 2010-13.1]

About ten billion CPUs were manufactured in 2008.
About 98% of new CPUs produced each year are
embedded.5Y

3.5 See also

o Arithmetic logic unit

e Central processing unit
e Comparison of CPU architectures
o Computer architecture
o Computer engineering
e CPU design

e Floating point unit

¢ Instruction set

e List of instruction sets
e List of microprocessors
e Microarchitecture

e Microcode

e Microprocessor chronology
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Chapter 4

Digital signal processor

See also: Digital signal processing
A digital signal processor (DSP) is a specialized

Z’Eﬁ.
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A digital signal processor chip found in a guitar effects unit.

microprocessor (or a SIP block), with its architecture op-
timized for the operational needs of digital signal process-
ine (11121

ing.

The goal of DSPs is usually to measure, filter and/or com-
press continuous real-world analog signals. Most general-
purpose microprocessors can also execute digital signal
processing algorithms successfully, but dedicated DSPs
usually have better power efficiency thus they are more
suitable in portable devices such as mobile phones be-
cause of power consumption constraints.l*l DSPs often
use special memory architectures that are able to fetch
multiple data and/or instructions at the same time.

4.1 Overview

Digital

290y ADC —> Signal —b DAC —b ‘o0
9 Processing 9
A typical digital processing system

Digital signal processing algorithms typically require a
large number of mathematical operations to be per-
formed quickly and repeatedly on a series of data sam-
ples. Signals (perhaps from audio or video sensors) are
constantly converted from analog to digital, manipulated
digitally, and then converted back to analog form. Many
DSP applications have constraints on latency; that is, for
the system to work, the DSP operation must be completed
within some fixed time, and deferred (or batch) process-
ing is not viable.

Most general-purpose microprocessors and operating
systems can execute DSP algorithms successfully, but
are not suitable for use in portable devices such as
mobile phones and PDAs because of power efficiency
constraints.’®] A specialized digital signal processor, how-
ever, will tend to provide a lower-cost solution, with bet-
ter performance, lower latency, and no requirements for
specialized cooling or large batteries.

The architecture of a digital signal processor is optimized
specifically for digital signal processing. Most also sup-
port some of the features as an applications processor or
microcontroller, since signal processing is rarely the only
task of a system. Some useful features for optimizing
DSP algorithms are outlined below.

4.2 Architecture

4.2.1 Software architecture

By the standards of general-purpose processors, DSP
instruction sets are often highly irregular. One impli-
cation for software architecture is that hand-optimized
assembly-code routines are commonly packaged into k-
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braries for re-use, instead of relying on advanced com-
piler technologies to handle essential algorithms.

Instruction setsl

e multiply—accumulates (MACs,
multiply—add, FMA) operations

including fused

o used extensively in all kinds of matrix opera-
tions
¢ convolution for filtering
e dot product
e polynomial evaluation
e Fundamental DSP algorithms depend heavily
on multiply—accumulate performance
o FIR filters
e Fast Fourier transform (FFT)

Instructions to increase parallelism:

e SIMD
e VLIW

e superscalar architecture

Specialized instructions for modulo addressing in
ring buffers and bit-reversed addressing mode for
FFT cross-referencing

Digital signal processors sometimes use time-
stationary encoding to simplify hardware and in-
crease coding efficiency.

e Multiple arithmetic units may require memory ar-
chitectures to support several accesses per instruc-
tion cycle

Special loop controls, such as architectural support
for executing a few instruction words in a very tight
loop without overhead for instruction fetches or exit
testing

ll)ata instructionsl

e Saturation arithmetic, in which operations that pro-
duce overflows will accumulate at the maximum (or
minimum) values that the register can hold rather
than wrapping around (maximum+1 doesn't over-
flow to minimum as in many general-purpose CPUs,
instead it stays at maximum). Sometimes various
sticky bits operation modes are available.

o Fixed-point arithmetic is often used to speed up
arithmetic processing

¢ Single-cycle operations to increase the benefits of
pipelining
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Program flow

e Floating-point unit integrated directly into the
datapath

e Pipelined architecture

e Highly parallel multiplier-accumulators (MAC
units)

e Hardware-controlled looping, to reduce or eliminate
the overhead required for looping operations

4.2.2 Hardware architecture
Memory architecture

DSPs are usually optimized for streaming data and use
special memory architectures that are able to fetch mul-
tiple data and/or instructions at the same time, such as
the Harvard architecture or Modified von Neumann ar-
chitecture, which use separate program and data memo-
ries (sometimes even concurrent access on multiple data
buses).

DSPs can sometimes rely on supporting code to know
about cache hierarchies and the associated delays. This is
a tradeoff that allows for better performance. In addition,
extensive use of DMA is employed.

Addressing and virtual memory DSPs frequently use
multi-tasking operating systems, but have no support for
virtual memory or memory protection. Operating sys-
tems that use virtual memory require more time for
context switching among processes, which increases la-
tency.

e Hardware modulo addressing

e Allows circular buffers to be implemented
without having to test for wrapping

e Bit-reversed addressing, a special addressing mode
o useful for calculating FFTs
e Exclusion of a memory management unit

e Memory-address calculation unit

4.3 History

Prior to the advent of stand-alone DSP chips discussed
below, most DSP applications were implemented using
bit-slice processors. The AMD 2901 bit-slice chip with
its family of components was a very popular choice.
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There were reference designs from AMD, but very of-
ten the specifics of a particular design were applica-
tion specific. These bit slice architectures would some-
times include a peripheral multiplier chip. Examples of
these multipliers were a series from TRW including the
TDC1008 and TDC1010, some of which included an ac-
cumulator, providing the requisite multiply—accumulate
(MAC) function.

In 1976, Richard Wiggins proposed the Speak & Spell
concept to Paul Breedlove, Larry Brantingham, and Gene
Frantz at Texas Instrument’s Dallas research facility. Two
years later in 1978 they produced the first Speak & Spell,
with the technological centerpiece being the TMS5100,!
the industry’s first digital signal processor. It also set other
milestones, being the first chip to use Linear predictive
coding to perform speech synthesis."!

In 1978, Intel released the 2920 as an “analog signal pro-
cessor”. It had an on-chip ADC/DAC with an internal
signal processor, but it didn't have a hardware multiplier
and was not successful in the market. In 1979, AMI re-
leased the S2811. It was designed as a microprocessor
peripheral, and it had to be initialized by the host. The
S2811 was likewise not successful in the market.

In 1980 the first stand-alone, complete DSPs — the
NEC pPD7720 and AT&T DSP1 — were presented at
the International Solid-State Circuits Conference '80.
Both processors were inspired by the research in PSTN
telecommunications.

The Altamira DX-1 was another early DSP, utilizing
quad integer pipelines with delayed branches and branch
prediction.

Another DSP produced by Texas Instruments (TI), the
TMS32010 presented in 1983, proved to be an even big-
ger success. It was based on the Harvard architecture,
and so had separate instruction and data memory. It
already had a special instruction set, with instructions
like load-and-accumulate or multiply-and-accumulate. It
could work on 16-bit numbers and needed 390 ns for a
multiply—add operation. TI is now the market leader in
general-purpose DSPs.

About five years later, the second generation of DSPs
began to spread. They had 3 memories for storing two
operands simultaneously and included hardware to accel-
erate tight loops, they also had an addressing unit capa-
ble of loop-addressing. Some of them operated on 24-bit
variables and a typical model only required about 21 ns
foraMAC. Members of this generation were for example
the AT&T DSP16A or the Motorola 56000.

The main improvement in the third generation was the ap-
pearance of application-specific units and instructions in
the data path, or sometimes as coprocessors. These units
allowed direct hardware acceleration of very specific
but complex mathematical problems, like the Fourier-
transform or matrix operations. Some chips, like the Mo-
torola MC68356, even included more than one processor
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core to work in parallel. Other DSPs from 1995 are the
TI TMS320C541 or the TMS 320C80.

The fourth generation is best characterized by the
changes in the instruction set and the instruction encod-
ing/decoding. SIMD extensions were added, VLIW and
the superscalar architecture appeared. As always, the
clock-speeds have increased, a 3 ns MAC now became
possible.

4.4 Modern DSPs

Modern signal processors yield greater performance; this
is due in part to both technological and architectural ad-
vancements like lower design rules, fast-access two-level
cache, (E)DMA circuitry and a wider bus system. Not all
DSPs provide the same speed and many kinds of signal
processors exist, each one of them being better suited for
a specific task, ranging in price from about US$1.50 to
US$300

Texas Instruments produces the C6000 series DSPs,
which have clock speeds of 1.2 GHz and implement sepa-
rate instruction and data caches. They also have an 8 MiB
2nd level cache and 64 EDMA channels. The top mod-
els are capable of as many as 8000 MIPS (instructions per
second), use VLIW (very long instruction word), perform
eight operations per clock-cycle and are compatible with
a broad range of external peripherals and various buses
(PCl/serial/etc). TMS320C6474 chips each have three
such DSPs, and the newest generation C6000 chips sup-
port floating point as well as fixed point processing.

Freescale produces a multi-core DSP family, the
MSC81xx. The MSC81xx is based on StarCore Archi-
tecture processors and the latest MSC8144 DSP com-
bines four programmable SC3400 StarCore DSP cores.
Each SC3400 StarCore DSP core has a clock speed of 1
GHz.

XMOS produces a multi-core multi-threaded line of pro-
cessor well suited to DSP operations, They come in vari-
ous speeds ranging from 400 to 1600 MIPS. The proces-
sors have a multi-threaded architecture that allows up to
8 real-time threads per core, meaning that a 4 core device
would support up to 32 real time threads. Threads com-
municate between each other with buffered channels that
are capable of up to 80 Mbit/s. The devices are easily
programmable in C and aim at bridging the gap between
conventional micro-controllers and FPGAs

CEVA, Inc. produces and licenses three distinct fami-
lies of DSPs. Perhaps the best known and most widely
deployed is the CEVA-TeakLite DSP family, a classic
memory-based architecture, with 16-bit or 32-bit word-
widths and single or dual MACs. The CEVA-X DSP
family offers a combination of VLIW and SIMD archi-
tectures, with different members of the family offering
dual or quad 16-bit MACs. The CEVA-XC DSP fam-
ily targets Software-defined Radio (SDR) modem designs
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and leverages a unique combination of VLIW and Vector
architectures with 32 16-bit MACs.

Analog Devices produce the SHARC-based DSP and
range in performance from 66 MHz/198 MFLOPS
(million floating-point operations per second) to 400
MHz/2400 MFLOPS. Some models support multiple
multipliers and ALUs, SIMD instructions and audio
processing-specific components and peripherals. The
Blackfin family of embedded digital signal processors
combine the features of a DSP with those of a general use
processor. As a result, these processors can run simple
operating systems like uCLinux, velOSity and Nucleus
RTOS while operating on real-time data.

NXP Semiconductors produce DSPs based on TriMedia
VLIW technology, optimized for audio and video pro-
cessing. In some products the DSP core is hidden as a
fixed-function block into a SoC, but NXP also provides a
range of flexible single core media processors. The Tri-
Media media processors support both fixed-point arith-
metic as well as floating-point arithmetic, and have spe-
cific instructions to deal with complex filters and entropy
coding.

CSR produces the Quatro family of SoCs that contain one
or more custom Imaging DSPs optimized for processing
document image data for scanner and copier applications.

Most DSPs use fixed-point arithmetic, because in real
world signal processing the additional range provided by
floating point is not needed, and there is a large speed
benefit and cost benefit due to reduced hardware com-
plexity. Floating point DSPs may be invaluable in appli-
cations where a wide dynamic range is required. Product
developers might also use floating point DSPs to reduce
the cost and complexity of software development in ex-
change for more expensive hardware, since it is generally
easier to implement algorithms in floating point.

Generally, DSPs are dedicated integrated circuits; how-
ever DSP functionality can also be produced by using
field-programmable gate array chips (FPGAs).

Embedded general-purpose RISC processors are becom-
ing increasingly DSP like in functionality. For example,
the OMAP3 processors include a ARM Cortex-A8 and
C6000 DSP.

In Communications a new breed of DSPs offering the fu-
sion of both DSP functions and H/W acceleration func-
tion is making its way into the mainstream. Such Mo-
dem processors include ASOCS ModemX and CEVA’s
XC4000.

4.5 See also

o Digital signal controller
e Graphics processing unit

e MDSP - a multiprocessor DSP
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Chapter 5

Embedded system

Picture of the internals of an ADSL modem/frouter, a mod-
e example of an embedded system. Labelled parts include a
microprocessor (4), RAM (6), and flash memory (7).

An embedded system is a computer system with a ded-
icated function within a larger mechanical or electrical
system, often with real-time computing constraints.[!(2]
It is embedded as part of a complete device often includ-
ing hardware and mechanical parts. Embedded systems
control many devices in common use today.*! 98 percent
of all microprocessors are manufactured as components
of embedded systems. ¥

Examples of properties typical of embedded comput-
ers when compared with general-purpose counterparts
are low power consumption, small size, rugged operat-
ing ranges, and low per-unit cost. This comes at the price
of limited processing resources, which make them sig-
nificantly more difficult to program and to interact with.
However, by building intelligence mechanisms on top of
the hardware, taking advantage of possible existing sen-
sors and the existence of a network of embedded units,
one can both optimally manage available resources at the
unit and network levels as well as provide augmented
functions, well beyond those available.! For example,
intelligent techniques can be designed to manage power
consumption of embedded systems. !

Modern embedded systems are often based on
microcontrollers (i.e. CPUs with integrated memory or
peripheral interfaces),””] but ordinary microprocessors
(using external chips for memory and peripheral interface
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circuits) are also common, especially in more-complex
systems. In either case, the processor(s) used may be
types ranging from general purpose to those specialised
in certain class of computations, or even custom designed
for the application at hand. A common standard class
of dedicated processors is the digital signal processor
(DSP).

Since the embedded system is dedicated to specific tasks,
design engineers can optimize it to reduce the size and
cost of the product and increase the reliability and per-
formance. Some embedded systems are mass-produced,
benefiting from economies of scale.

Embedded systems range from portable devices such
as digital watches and MP3 players, to large stationary
installations like traffic lights, factory controllers, and
largely complex systems like hybrid vehicles, MRI, and
avionics. Complexity varies from low, with a single
microcontroller chip, to very high with multiple units,
peripherals and networks mounted inside a large chassis
or enclosure.

5.1 Varieties

Embedded systems are commonly found in consumer,
cooking, industrial, automotive, medical, commercial
and military applications.

Telecommunications systems employ numerous embed-
ded systems from telephone switches for the network to
cell phones at the end-user. Computer networking uses
dedicated routers and network bridges to route data.

Consumer electronics include personal digital assistants
(PDAs), mp3 players, mobile phones, videogame con-
soles, digital cameras, DVD players, GPS receivers,
and printers. Household appliances, such as microwave
ovens, washing machines and dishwashers, include em-
bedded systems to provide flexibility, efficiency and
features. Advanced HVAC systems use networked
thermostats to more accurately and efficiently control
temperature that can change by time of day and season.
Home automation uses wired- and wireless-networking
that can be used to control lights, climate, security, au-
dio/visual, surveillance, etc., all of which use embedded
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Embedded Computer Sub- Assembly for Accupoll Electronic Vot-
ing Machine'®

devices for sensing and controlling.

Transportation systems from flight to automobiles in-
creasingly use embedded systems. New airplanes con-
tain advanced avionics such as inertial guidance systems
and GPS receivers that also have considerable safety re-
quirements. Various electric motors — brushless DC
motors, induction motors and DC motors — use elec-
tric/electronic motor controllers. Automobiles, electric
vehicles, and hybrid vehicles increasingly use embed-
ded systems to maximize efficiency and reduce pol-
lution. Other automotive safety systems include anti-
lock braking system (ABS), Electronic Stability Control
(ESC/ESP), traction control (TCS) and automatic four-
wheel drive.

Medical equipment uses embedded systems for vital
signs monitoring, electronic stethoscopes for amplifying
sounds, and various medical imaging (PET, SPECT, CT,
MRI) for non-invasive internal inspections. Embedded
systems within medical equipment are often powered by
industrial computers.

Embedded systems are used in transportation, fire safety,
safety and security, medical applications and life critical
systems, as these systems can be isolated from hacking
and thus, be more reliable. For fire safety, the systems
can be designed to have greater ability to handle higher
temperatures and continue to operate. In dealing with
security, the embedded systems can be self-sufficient and
be able to deal with cut electrical and communication sys-
tems.

A new class of miniature wireless devices called motes
are networked wireless sensors. Wireless sensor network-
ing, WSN, makes use of miniaturization made possible
by advanced IC design to couple full wireless subsystems
to sophisticated sensors, enabling people and companies
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to measure a myriad of things in the physical world and
act on this information through IT monitoring and control
systems. These motes are completely self-contained, and
will typically run off a battery source for years before the
batteries need to be changed or charged.

Embedded Wi-Fi modules provide a simple means of
wirelessly enabling any device which communicates via
a serial port.

5.2 History

One of the very first recognizably modern embedded sys-
tems was the Apollo Guidance Computer, developed by
Charles Stark Draper at the MIT Instrumentation Lab-
oratory. At the project’s inception, the Apollo guid-
ance computer was considered the riskiest item in the
Apollo project as it employed the then newly devel-
oped monolithic integrated circuits to reduce the size
and weight. An early mass-produced embedded sys-
tem was the Autonetics D-17 guidance computer for the
Minuteman missile, released in 1961. When the Min-
uteman II went into production in 1966, the D-17 was
replaced with a new computer that was the first high-
volume use of integrated circuits. This program alone
reduced prices on quad nand gate ICs from $1000/each
to $3/each, permitting their use in commercial products.

Since these early applications in the 1960s, embedded
systems have come down in price and there has been a
dramatic rise in processing power and functionality. An
early microprocessor for example, the Intel 4004, was de-
signed for calculators and other small systems but still re-
quired external memory and support chips. In 1978 Na-
tional Engineering Manufacturers Association released
a “standard” for programmable microcontrollers, includ-
ing almost any computer-based controllers, such as single
board computers, numerical, and event-based controllers.

As the cost of microprocessors and microcontrollers
fell it became feasible to replace expensive knob-based
analog components such as potentiometers and variable
capacitors with up/down buttons or knobs read out by a
microprocessor even in consumer products. By the early
1980s, memory, input and output system components had
been integrated into the same chip as the processor form-
ing a microcontroller. Microcontrollers find applications
where a general-purpose computer would be too costly.

A comparatively low-cost microcontroller may be pro-
grammed to fulfill the same role as a large number of
separate components. Although in this context an em-
bedded system is usually more complex than a traditional
solution, most of the complexity is contained within the
microcontroller itself. Very few additional components
may be needed and most of the design effort is in the soft-
ware. Software prototype and test can be quicker com-
pared with the design and construction of a new circuit
not using an embedded processor.
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Characteristics

Gumstix Overo COM, a tiny, OMAP-based embedded computer-
on-module with Wifi and Bluetooth.

Embedded systems are designed to do some specific task,
rather than be a general-purpose computer for multiple
tasks. Some also have real-time performance constraints
that must be met, for reasons such as safety and usabil-
ity; others may have low or no performance requirements,
allowing the system hardware to be simplified to reduce
costs.

Embedded systems are not always standalone devices.
Many embedded systems consist of small, computerized
parts within a larger device that serves a more general
purpose. For example, the Gibson Robot Guitar fea-
tures an embedded system for tuning the strings, but
the overall purpose of the Robot Guitar is, of course,
to play music.'%! Similarly, an embedded system in an
automobile provides a specific function as a subsystem of
the car itself.

e-con Systems eSOM270 & eSOM300 Computer on Modules
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The program instructions written for embedded systems
are referred to as firmware, and are stored in read-only
memory or Flash memory chips. They run with limited
computer hardware resources: little memory, small or
non-existent keyboard or screen.

5.3.1 User interface

Embedded system text user interface using MicroVGA"™ !

Embedded systems range from no user interface at all, in
systems dedicated only to one task, to complex graphical
user interfaces that resemble modern computer desk-
top operating systems. Simple embedded devices use
buttons, LEDs, graphic or character LCDs (HD44780
LCD for example) with a simple menu system.

More sophisticated devices which use a graphical screen
with touch sensing or screen-edge buttons provide flexi-
bility while minimizing space used: the meaning of the
buttons can change with the screen, and selection in-
volves the natural behavior of pointing at what’s desired.
Handheld systems often have a screen with a “joystick
button” for a pointing device.

Some systems provide user interface remotely with the
help of a serial (e.g. RS-232, USB, I’C, etc.) or network
(e.g. Ethernet) connection. This approach gives several
advantages: extends the capabilities of embedded system,
avoids the cost of a display, simplifies BSP and allows one
to build a rich user interface on the PC. A good example
of this is the combination of an embedded web server
running on an embedded device (such as an IP camera)
or a network router. The user interface is displayed in a
web browser on a PC connected to the device, therefore
needing no software to be installed.

5.3.2 Processors in embedded systems

Embedded processors can be broken into two broad cat-
egories. Ordinary microprocessors (UP) use separate in-
tegrated circuits for memory and peripherals. Micro-
controllers (uC) have on-chip peripherals, thus reducing
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power consumption, size and cost. In contrast to the per-
sonal computer market, many different basic CPU archi-
tectures are used, since software is custom-developed for
an application and is not a commodity product installed
by the end user. Both Von Neumann as well as various
degrees of Harvard architectures are used. RISC as well
as non-RISC processors are found. Word lengths vary
from 4-bit to 64-bits and beyond, although the most typ-
ical remain 8/16-bit. Most architectures come in a large
number of different variants and shapes, many of which
are also manufactured by several different companies.

Numerous microcontrollers have been developed for em-
bedded systems use. General-purpose microprocessors
are also used in embedded systems, but generally require
more support circuitry than microcontrollers.

Ready made computer boards

PC/104 and PC/104+ are examples of standards for ready
made computer boards intended for small, low-volume
embedded and ruggedized systems, mostly x86-based.
These are often physically small compared to a stan-
dard PC, although still quite large compared to most sim-
ple (8/16-bit) embedded systems. They often use DOS,
Linux, NetBSD, or an embedded real-time operating sys-
tem such as MicroC/OS-II, QNX or VxWorks. Some-
times these boards use non-x86 processors.

In certain applications, where small size or power effi-
ciency are not primary concerns, the components used
may be compatible with those used in general purpose
x86 personal computers. Boards such as the VIA EPTA
range help to bridge the gap by being PC-compatible
but highly integrated, physically smaller or have other at-
tributes making them attractive to embedded engineers.
The advantage of this approach is that low-cost commod-
ity components may be used along with the same soft-
ware development tools used for general software devel-
opment. Systems builtin this way are still regarded as em-
bedded since they are integrated into larger devices and
fulfill a single role. Examples of devices that may adopt
this approach are ATMs and arcade machines, which con-
tain code specific to the application.

However, most ready-made embedded systems boards
are not PC-centered and do not use the ISA or PCI busses.
When a System-on-a-chip processor is involved, there
may be little benefit to having a standarized bus connect-
ing discrete components, and the environment for both
hardware and software tools may be very different.

One common design style uses a small system module,
perhaps the size of a business card, holding high den-
sity BGA chips such as an ARM-based System-on-a-chip
processor and peripherals, external flash memory for stor-
age, and DRAM for runtime memory. The module ven-
dor will usually provide boot software and make sure
there is a selection of operating systems, usually including
Linux and some real time choices. These modules can be
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manufactured in high volume, by organizations familiar
with their specialized testing issues, and combined with
much lower volume custom mainboards with application-
specific external peripherals.

Implementation of embedded systems have advanced,
embedded systems can easily be implemented with al-
ready made boards which are based on worldwide ac-
cepted platform. These platforms include but not limited
to arduino, raspberry pi etc.

ASIC and FPGA solutions

A common array of n configuration for very-high-volume
embedded systems is the system on a chip (SoC) which
contains a complete system consisting of multiple proces-
sors, multipliers, caches and interfaces on a single chip.
SoCs can be implemented as an application-specific inte-
grated circuit (ASIC) or using a field-programmable gate
array(FPGA).

5.3.3 Peripherals

A close-up of the SMSC LAN9IC110 (SMSC 91x) chip, an em-
bedded ethernet chip.

Embedded Systems talk with the outside world via
peripherals, such as:

e Serial Communication Interfaces (SCI): RS-232,
RS-422, RS-485 etc.

e Synchronous Serial Communication Interface: 12C,
SPI, SSC and ESSI (Enhanced Synchronous Serial
Interface)

e Universal Serial Bus (USB)
e Multi Media Cards (SD Cards, Compact Flash etc.)
e Networks: Ethernet, LonWorks, etc.

e Fieldbuses: CAN-Bus, LIN-Bus, PROFIBUS, etc.
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e Timers: PLL(s), Capture/Compare and Time Pro-
cessing Units

e Discrete 10: aka General Purpose Input/Output
(GPIO)

o Analog to Digital/Digital to Analog (ADC/DAC)

e Debugging: JTAG, ISP, ICSP, BDM Port, BITP,
and DB9Y ports.

5.34 Tools

As with other software, embedded system designers use
compilers, assemblers, and debuggers to develop embed-
ded system software. However, they may also use some
more specific tools:

In circuit debuggers or emulators (see next section).

Utilities to add a checksum or CRC to a program,
so the embedded system can check if the program is
valid.

For systems using digital signal processing, de-
velopers may use a math workbench such as
Scilab / Scicos, MATLAB / Simulink, EICASLAB,
MathCad, Mathematica,or FlowStone DSP to simu-
late the mathematics. They might also use libraries
for both the host and target which eliminates devel-
oping DSP routines as done in DSPnano RTOS.

e System Level Modeling and Simulation tools such
as VisualSim helps designers to construct simula-
tion models of a system with Hardware Components
such as Processors, Memories, DMA, Interfaces,
buses and Software behavior flow as a State diagram
or flow diagram using configurable library blocks.
Simulation is conducted to select right components
by performing power vs performance trade-off, reli-
ability analysis and bottleneck analysis. Typical re-
ports that helps designer to make architecture deci-
sions includes application latency, Device Through-
put, Device Utilization, Power Consumption of full
System as well as device level power consumption.

o A model based development tool like VisSim lets
you create and simulate graphical data flow and
UML State chart diagrams of components like dig-
ital filters, motor controllers, communication pro-
tocol decoding and multi-rate tasks. Interrupt han-
dlers can also be created graphically. After simula-
tion, you can automatically generate C-code to the
VisSim RTOS which handles the main control task
and preemption of background tasks, as well as au-
tomatic setup and programming of on-chip periph-
erals.

o Custom compilers and linkers may be used to opti-
mize specialized hardware.
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o An embedded system may have its own special lan-
guage or design tool, or add enhancements to an ex-
isting language such as Forth or Basic.

o Another alternative is to add a real-time operating
system or embedded operating system, which may
have DSP capabilities like DSPnano RTOS.

e Modeling and code generating tools often based on
state machines

Software tools can come from several sources:

e Software companies that specialize in the embedded
market

e Ported from the GNU software development tools

e Sometimes, development tools for a personal com-
puter can be used if the embedded processor is a
close relative to a common PC processor

As the complexity of embedded systems grows, higher
level tools and operating systems are migrating into ma-
chinery where it makes sense. For example, cellphones,
personal digital assistants and other consumer comput-
ers often need significant software that is purchased or
provided by a person other than the manufacturer of the
electronics. In these systems, an open programming en-
vironment such as Linux, NetBSD, OSGi or Embedded
Java is required so that the third-party software provider
can sell to a large market.

5.3.5 Debugging

Embedded debugging may be performed at different lev-
els, depending on the facilities available. From simplest
to most sophisticated they can be roughly grouped into
the following areas:

o Interactive resident debugging, using the simple
shell provided by the embedded operating system
(e.g. Forth and Basic)

o External debugging using logging or serial port out-
put to trace operation using either a monitor in flash
or using a debug server like the Remedy Debugger
which even works for heterogeneous multicore sys-
tems.

e An in-circuit debugger (ICD), a hardware device
that connects to the microprocessor via a JTAG or
Nexus interface. This allows the operation of the
microprocessor to be controlled externally, but is
typically restricted to specific debugging capabilities
in the processor.

e An in-circuit emulator (ICE) replaces the micropro-
cessor with a simulated equivalent, providing full
control over all aspects of the microprocessor.
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o A complete emulator provides a simulation of all as-
pects of the hardware, allowing all of it to be con-
trolled and modified, and allowing debugging on a
normal PC. The downsides are expense and slow op-
eration, in some cases up to 100X slower than the
final system.

e For SoC designs, the typical approach is to ver-
ify and debug the design on an FPGA prototype
board. Tools such as Certus!'!) are used to insert
probes in the FPGA RTL that make signals available
for observation. This is used to debug hardware,
firmware and software interactions across multiple
FPGA with capabilities similar to a logic analyzer.

Unless restricted to external debugging, the programmer
can typically load and run software through the tools, view
the code running in the processor, and start or stop its
operation. The view of the code may be as HLL source-
code, assembly code or mixture of both.

Because an embedded system is often composed of
a wide variety of elements, the debugging strategy
may vary. For instance, debugging a software- (and
microprocessor-) centric embedded system is different
from debugging an embedded system where most of the
processing is performed by peripherals (DSP, FPGA, co-
processor). An increasing number of embedded systems
today use more than one single processor core. A com-
mon problem with multi-core development is the proper
synchronization of software execution. In such a case, the
embedded system design may wish to check the data traf-
fic on the busses between the processor cores, which re-
quires very low-level debugging, at signal/bus level, with
a logic analyzer, for instance.

Tracing

Real-time operating systems (RTOS) often supports
tracing of operating system events. A graphical view is
presented by a host PC tool, based on a recording of the
system behavior. The trace recording can be performed
in software, by the RTOS, or by special tracing hardware.
RTOS tracing allows developers to understand timing and
performance issues of the software system and gives a
good understanding of the high-level system behaviors.
Commercial tools like RTXC Quadros or IAR Systems
exists.

5.3.6 Reliability

Embedded systems often reside in machines that are ex-
pected to run continuously for years without errors, and
in some cases recover by themselves if an error occurs.
Therefore, the software is usually developed and tested
more carefully than that for personal computers, and un-
reliable mechanical moving parts such as disk drives,
switches or buttons are avoided.
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Specific reliability issues may include:

e The system cannot safely be shut down for repair,
or it is too inaccessible to repair. Examples include
space systems, undersea cables, navigational bea-
cons, bore-hole systems, and automobiles.

o The system must be kept running for safety reasons.
“Limp modes” are less tolerable. Often backups are
selected by an operator. Examples include aircraft
navigation, reactor control systems, safety-critical
chemical factory controls, train signals.

o The system will lose large amounts of money when
shut down: Telephone switches, factory controls,
bridge and elevator controls, funds transfer and mar-
ket making, automated sales and service.

A variety of techniques are used, sometimes in combina-
tion, to recover from errors—both software bugs such as
memory leaks, and also soft errors in the hardware:

e watchdog timer that resets the computer unless the
software periodically notifies the watchdog

e subsystems with redundant spares that can be
switched over to

o software “limp modes” that provide partial function

e Designing with a Trusted Computing Base (TCB)
architecture!?! ensures a highly secure & reliable
system environment

e A Hypervisor designed for embedded systems, is
able to provide secure encapsulation for any sub-
system component, so that a compromised software
component cannot interfere with other subsystems,
or privileged-level system software. This encapsula-
tion keeps faults from propagating from one subsys-
tem to another, improving reliability. This may also
allow a subsystem to be automatically shut down and
restarted on fault detection.

e Immunity Aware Programming

5.3.7 High vs low volume

For high volume systems such as portable music players
or mobile phones, minimizing cost is usually the primary
design consideration. Engineers typically select hardware
that is just “good enough” to implement the necessary
functions.

For low-volume or prototype embedded systems, general
purpose computers may be adapted by limiting the pro-
grams or by replacing the operating system with a real-
time operating system.
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54 Embedded software architec-
tures

Main article: Embedded software

There are several different types of software architecture
in common use.

5.4.1 Simple control loop

In this design, the software simply has a loop. The loop
calls subroutines, each of which manages a part of the
hardware or software.

5.4.2 Interrupt-controlled system

Some embedded systems are predominantly controlled by
interrupts. This means that tasks performed by the sys-
tem are triggered by different kinds of events; an interrupt
could be generated, for example, by a timer in a prede-
fined frequency, or by a serial port controller receiving a
byte.

These kinds of systems are used if event handlers need
low latency, and the event handlers are short and simple.
Usually, these kinds of systems run a simple task ina main
loop also, but this task is not very sensitive to unexpected
delays.

Sometimes the interrupt handler will add longer tasks to
a queue structure. Later, after the interrupt handler has
finished, these tasks are executed by the main loop. This
method brings the system close to a multitasking kernel
with discrete processes.

5.4.3 Cooperative multitasking

A nonpreemptive multitasking system is very similar to
the simple control loop scheme, except that the loop is
hidden in an API. The programmer defines a series of
tasks, and each task gets its own environment to “run” in.
When a task is idle, it calls an idle routine, usually called
“pause”, “wait”, “yield”, “nop” (stands for no operation),
etc.

The advantages and disadvantages are similar to that of
the control loop, except that adding new software is eas-
ier, by simply writing a new task, or adding to the queue.

5.44 Preemptive multitasking or multi-
threading

In this type of system, a low-level piece of code switches
between tasks or threads based on a timer (connected to
an interrupt). This is the level at which the system is gen-
erally considered to have an “operating system” kernel.
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Depending on how much functionality is required, it in-
troduces more or less of the complexities of managing
multiple tasks running conceptually in parallel.

As any code can potentially damage the data of another
task (except in larger systems using an MMU) programs
must be carefully designed and tested, and access to
shared data must be controlled by some synchronization
strategy, such as message queues, semaphores or a non-
blocking synchronization scheme.

Because of these complexities, it is common for organiza-
tions to use a real-time operating system (RTOS), allow-
ing the application programmers to concentrate on de-
vice functionality rather than operating system services,
at least for large systems; smaller systems often cannot
afford the overhead associated with a generic real time
system, due to limitations regarding memory size, per-
formance, or battery life. The choice that an RTOS is re-
quired brings in its own issues, however, as the selection
must be done prior to starting to the application develop-
ment process. This timing forces developers to choose
the embedded operating system for their device based
upon current requirements and so restricts future options
to a large extent.['*] The restriction of future options be-
comes more of an issue as product life decreases. Addi-
tionally the level of complexity is continuously growing
as devices are required to manage variables such as se-
rial, USB, TCP/IP, Bluetooth, Wireless LAN, trunk ra-
dio, multiple channels, data and voice, enhanced graph-
ics, multiple states, multiple threads, numerous wait states
and so on. These trends are leading to the uptake of
embedded middleware in addition to a real-time operat-
ing system.

5.4.5 Microkernels and exokernels

A microkernel is a logical step up from a real-time OS.
The usual arrangement is that the operating system ker-
nel allocates memory and switches the CPU to different
threads of execution. User mode processes implement
major functions such as file systems, network interfaces,
etc.

In general, microkernels succeed when the task switching
and intertask communication is fast and fail when they are
slow.

Exokernels communicate efficiently by normal subroutine
calls. The hardware and all the software in the system are
available to and extensible by application programmers.

5.4.6 Monolithic kernels

In this case, a relatively large kernel with sophisticated
capabilities is adapted to suit an embedded environment.
This gives programmers an environment similar to a
desktop operating system like Linux or Microsoft Win-
dows, and is therefore very productive for development;
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on the downside, it requires considerably more hardware
resources, is often more expensive, and, because of the
complexity of these kernels, can be less predictable and
reliable.

Common examples of embedded monolithic kernels are
embedded Linux and Windows CE.

Despite the increased cost in hardware, this type of em-
bedded system is increasing in popularity, especially on
the more powerful embedded devices such as wireless
routers and GPS navigation systems. Here are some of
the reasons:

e Ports to common embedded chip sets are available.

e They permit re-use of publicly available code for
device drivers, web servers, firewalls, and other
code.

e Development systems can start out with broad
feature-sets, and then the distribution can be con-
figured to exclude unneeded functionality, and save
the expense of the memory that it would consume.

e Many engineers believe that running application
code in user mode is more reliable and easier to
debug, thus making the development process easier
and the code more portable.

o Features requiring faster response than can be guar-
anteed can often be placed in hardware.

5.4.7 Additional software components

In addition to the core operating system, many embed-
ded systems have additional upper-layer software com-
ponents. These components consist of networking proto-
col stacks like CAN, TCP/IP, FTP, HTTP, and HTTPS,
and also included storage capabilities like FAT and flash
memory management systems. If the embedded device
has audio and video capabilities, then the appropriate
drivers and codecs will be present in the system. In the
case of the monolithic kernels, many of these software
layers are included. In the RTOS category, the availabil-
ity of the additional software components depends upon
the commercial offering.

5.5 See also

¢ Communications server

Cyber-physical system
e DSP

Electronic Control Unit

Hypervisor
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e Embedded operating systems
e Embedded software

e Firmware

s FPGA

o Information appliance

e Microprocessor

e Microcontroller

e Programming languages

o Real-time operating system
e Software engineering

e System on a chip

e System on module

e Ubiquitous computing

5.6 Notes

[1] For more details of MicroVGA see this PDF.
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tems Education, workshop covering educational as-
pects of embedded systems

CHAPTER 5. EMBEDDED SYSTEM



Chapter 6

MPSoC

The multiprocessor System-on-Chip (MPSoC) is a 6.4 External links

system-on-a-chip (SoC) which uses multiple processors
(see multi-core), usually targeted for embedded applica-
tions. It is used by platforms that contain multiple, usually
heterogeneous, processing elements with specific func-
tionalities reflecting the need of the expected applica-
tion domain, a memory hierarchy (often using scratchpad
RAM and DMA) and I/O components. All these com-
ponents are linked to each other by an on-chip intercon-
nect. These architectures meet the performance needs
of multimedia applications, telecommunication architec-
tures, network security and other application domains
while limiting the power consumption through the use of
specialised processing elements and architecture.

6.1 Benchmarks

MPSoC research and development often compares many
options. Benchmarks, such as COSMIC, ! are developed
to help such evaluations.

6.2 Examples

e CELL processor

e Adapteva epiphany architecture

6.3 See also

Multi-core (computing)

System-on-a-chip

Many-core processing unit

Multiprocessing

Symmetric multiprocessing (SMP)

multitasking

Parallel computing
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e MPSoC - Annual Conference on MPSoC

e Annual Symposium

6.5 References

[1] “COSMIC Heterogeneous Multiprocessor Benchmark
Suite”



Chapter 7

System in package

A system in package (SiP) or system-in-a-package is
a number of integrated circuits enclosed in a single mod-
ule (package). The SiP performs all or most of the func-
tions of an electronic system, and is typically used inside
a mobile phone, digital music player, etc. '] Dies con-
taining integrated circuits may be stacked vertically on a
substrate. They are internally connected by fine wires that
are bonded to the package. Alternatively, with a flip chip
technology, solder bumps are used to join stacked chips
together.

SiP dies can be stacked vertically or tiled horizontally, un-
like slightly less dense multi-chip modules, which place
dies horizontally on a carrier. SiP connects the dies
with standard off-chip wire bonds or solder bumps, un-
like slightly denser three-dimensional integrated circuits
which connect stacked silicon dies with conductors run-
ning through the die.

Many different 3-D packaging techniques have been de-
veloped for stacking many more-or-less standard chip
dies into a compact area./?!

An example SiP can contain several chips—such as a
specialized processor, DRAM, flash memory—combined
with passive components—resistors and capacitors—all
mounted on the same substrate. This means that a com-
plete functional unit can be built in a multi-chip package,
so that few external components need to be added to make
it work. This is particularly valuable in space constrained
environments like MP3 players and mobile phones as it
reduces the complexity of the printed circuit board and
overall design. Despite its benefits, this technique de-
creases the yield of fabrication since any defective chip
in the package will result in a non-functional packaged
integrated circuit, even if all other modules in that same
package are functional.

7.1 Suppliers

e Atmel

o NANIUM, S.A.

Advanced Semiconductor Engineering, Inc.

e CeraMicro
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ChipSiP Technology
STATS ChipPAC Ltd
Toshiba

Amkor

Renesas

SanDisk

Samsung

7.2 See also

System on a chip

Package on package
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Universal Synchronous/Asynchronous

Receiver/Transmitter

A Universal Synchronous/Asynchronous Re-
ceiver/Transmitter (USART) is a type of a serial
interface device that can be programmed to communi-
cate asynchronously or synchronously. See Universal
asynchronous receiver/transmitter (UART) for a dis-
cussion of the asynchronous capabilities of these
devices.

8.1 Purpose and History

The USART’s synchronous capabilities were primar-
ily intended to support synchronous protocols like
IBM’s Synchronous transmit-receive (STR), Binary Syn-
chronous Communications (BSC), Synchronous Data
Link Control (SDLC), and the ISO-standard High-
Level Data Link Control (HDLC) synchronous link-
layer protocols, which were used with synchronous voice-
frequency modems. These protocols were designed to
make the best use of bandwidth when modems were ana-
log devices. In those times, the fastest asynchronous
voice-band modem could achieve at most speeds of
300 bps using frequency-shift keying, while synchronous
modems could run at speeds up to 9600 bps using
phase-shift keying. Synchronous transmission used only
slightly over 80% of the bandwidth of the now more-
familiar asynchronous transmission, since start and stop
bits were unnecessary. Those modems are obsolete, hav-
ing been replaced by modems with which convert asyn-
chronous data to synchronous forms, but similar syn-
chronous telecommunications protocols survive in nu-
merous block-oriented technologies such as the widely-
used IEEE 802.2 (Ethernet) link-level protocol. USARTS
are still sometimes integrated with MCUs. USARTS are
still used in routers that connect to external CSU/DSU
devices, and they often use either Cisco’s proprietary
HDLC implementation or the IETF standard Point-to-
Point Protocol in HDLC-like framing as defined in RFC
1662.

39

8.2 Operation

The operation of a USART is intimately related to the
various protocols; refer to those pages for details. This
section only provides a few general notes.

e USARTSs in synchronous mode transmits data in
frames. In synchronous operation, characters must
be provided on time until a frame is complete; if
the controlling processor does not do so, this is an
‘underrun error,” and transmission of the frame is
aborted.

o USARTS operating as synchronous devices used ei-
ther character-oriented or bit-oriented mode. In
character (STR and BSC) modes, the device relied
on particular characters to define frame boundaries;
in bit (HDLC and SDLC) modes earlier devices
relied on physical-layer signals, while later devices
took over the physical-layer recognition of bit pat-
terns.

e A synchronous line is never silent; when the modem
is transmitting, data is flowing. When the physical
layer indicates that the modem is active, a USART
will send a steady stream of padding, either charac-
ters or bits as appropriate to the device and protocol.

8.3 Devices

8.4 References

[1] “Intel 8251A Programmable Communications Interface,”
(PDF). www.datasheetarchive.com. Retrieved 2015-12-
16.

2]

“Enhanced Serial Communications Controllers,”. www.
zilog.com. Retrieved 2015-12-16.
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Serial Peripheral Interface Bus

SCLK » SCLK
SPI MOSI # MOSI SPI
Master MISO |« MISO Slave
SS » SS
SPI bus: single master and single slave
SCLK »| SCLK
MOSI » MOSI SPI
SPI MISO |+ MISO Slave
Master SS1 »| 55
552
553 |—
» SCLK
» MOSI SPI
MIsO Slave
| SS
—» SCLK
» MOSI SPI
MIsO Slave
»| SS

SPI bus: single master and multiple slaves

The Serial Peripheral Interface (SPI) bus is a
synchronous serial communication interface specifica-
tion used for short distance communication, primarily
in embedded systems. The interface was developed by
Motorola and has become a de facto standard. Typical
applications include Secure Digital cards and liquid crys-
tal displays.

SPI devices communicate in full duplex mode using a
master-slave architecture with a single master. The mas-
ter device originates the frame for reading and writing.
Multiple slave devices are supported through selection
with individual slave select (SS) lines.

Sometimes SPI is called a four-wire serial bus, contrast-
ing with three-, two-, and one-wire serial buses. The
SPI may be accurately described as a synchronous se-
rial interface,!!! but it is different from the Synchronous
Serial Interface (SSI) protocol, which is also a four-wire
synchronous serial communication protocol, but employs

differential signaling and provides only a single simplex
communication channel.

9.1 Interface

The SPI bus specifies four logic signals:

e SCLK : Serial Clock (output from master).

e MOSI : Master Output, Slave Input (output from
master).

e MISO : Master Input, Slave Output (output from
slave).

e 5SS : Slave Select (active low, output from master).
Alternative naming conventions are also widely used, and

SPI port pin names for particular IC products may differ
from those depicted in these illustrations:

Serial Clock:
e SCLK: SCK, CLK.
Master Output --> Slave Input:

e MOSI : SIMO, SDI(for slave devices), DI, DIN, SI,
MTST.

Master Input <-- Slave Output:

e MISO : SOMI, SDO (for slave devices ), DO,
DOUT, SO, MRSR.

Slave Select:
e 5SS :nCS, CS, CSB, CSN, EN, nSS, STE, SYNC.

The MOSI/MISO convention requires that, on devices
using the alternate names, SDI on the master be con-
nected to SDO on the slave, and vice versa. Chip se-
lect polarity is rarely active high, although some notations
(such as SS or CS instead of nSS or nCS) suggest other-
wise. Slave select is used instead of an addressing con-
cept.
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9.2 Operation

The SPI bus can operate with a single master device and
with one or more slave devices.

If a single slave device is used, the SS pin may be fixed
to logic low if the slave permits it. Some slaves require a
falling edge of the chip select signal to initiate an action,
an example is the Maxim MAX1242 ADC, which starts
conversion on a high—low transition. With multiple slave
devices, an independent SS signal is required from the
master for each slave device.

Most slave devices have tri-state outputs so their MISO
signal becomes high impedance (logically disconnected)
when the device is not selected. Devices without tri-state
outputs cannot share SPI bus segments with other devices;
only one such slave could talk to the master.

9.2.1 Data transmission

Master Slave
| Mem ory | SCLK g | Memory |
Ll
[ eleTsTel7] +—"— i [o[2 2[4 5T ]7]
? MISO I

A typical hardware setup using two shiftregisters to form an inter-
chip circular buffer

To begin communication, the bus master configures the
clock, using a frequency supported by the slave device,
typically up to a few MHz. The master then selects the
slave device with a logic level O on the select line. If a
waiting period is required, such as for analog-to-digital
conversion, the master must wait for at least that period
of time before issuing clock cycles.

During each SPI clock cycle, a full duplex data transmis-
sion occurs. The master sends a bit on the MOSI line and
the slave reads it, while the slave sends a bit on the MISO
line and the master reads it. This sequence is maintained
even when only one-directional data transfer is intended.

Transmissions normally involve two shift registers of
some given word size, such as eight bits, one in the mas-
ter and one in the slave; they are connected in a virtual
ring topology. Data is usually shifted out with the most-
significant bit first, while shifting a new less-significant bit
into the same register. At the same time, Data from the
counterpart is shifted into the least-significant bit regis-
ter. After the register bits have been shifted out and in,
the master and slave have exchanged register values. If
more data needs to be exchanged, the shift registers are
reloaded and the process repeats. Transmission may con-
tinue for any number of clock cycles. When complete,
the master stops toggling the clock signal, and typically
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deselects the slave.

Transmissions often consist of 8-bit words. However,
other word sizes are also common, for example, 16-bit
words for touchscreen controllers or audio codecs, such
as the TSC2101 by Texas Instruments, or 12-bit words for
many digital-to-analog or analog-to-digital converters.

Every slave on the bus that has not been activated using its
chip select line must disregard the input clock and MOSI
signals, and must not drive MISO.

9.2.2 Clock polarity and phase

CPOL=0 ML
SCK  EpoL=1 "\ —

SS \ —

Cycle# Dz a7 el
MISO 2 2 s s e 7 ez
MOS| 2 I A s (e 7 8=

CPHA=0

Cycle # s e 7 eX
MISO DX EE s e ez
MOSI2XX A X e aYXaXsYely)el)z

CPHA=1

A timing diagram showing clock polarity and phase. The red ver-
tical line represents CPHA=0 and the blue vertical line represents
CPHA=1

In addition to setting the clock frequency, the master must
also configure the clock polarity and phase with respect
to the data. Freescale’s SPI Block Guide!?! names these
two options as CPOL and CPHA respectively, and most
vendors have adopted that convention.

The timing diagram is shown to the right. The timing is
further described below and applies to both the master
and the slave device.

e At CPOL=0 the base value of the clock is zero.i.e.
the active state is 1 and idle state is 0.

e For CPHA=0, data are captured on the clock’s
rising edge (low—high transition) and data is
output on a falling edge (high—low clock tran-
sition).

e For CPHA=1, data are captured on the clock’s
falling edge and data is output on a rising edge.

e At CPOL=1 the base value of the clock is one (in-
version of CPOL=0), i.e. the active state is 0 and
idle state is 1.

e For CPHA=0, data are captured on clock’s
falling edge and data is output on a rising edge.

e For CPHA=1, data are captured on clock’s ris-
ing edge and data is output on a falling edge.

That is, CPHA=0 means sampling on the first clock edge,
while CPHA=1 means sampling on the second clock



42

edge, regardless of whether that clock edge is rising or
falling. Note that with CPHA=0, the data must be stable
for a half cycle before the first clock cycle.

In other words, CPHA=0 means transmitting data on the
active toidle state and CPHA=1 means that data is trans-
mitted on the idle to active state edge. Note that if trans-
mission happens on a particular edge, then capturing will
happen on the opposite edge(i.e. if transmission hap-
pens on falling, then reception happens on rising and vice
versa). The MOSI and MISO signals are usually stable
(at their reception points) for the half cycle until the next
clock transition. SPI master and slave devices may well
sample data at different points in that half cycle.

This adds more flexibility to the communication channel
between the master and slave.

9.2.3 Mode numbers

The combinations of polarity and phases are often re-
ferred to as modes which are commonly numbered ac-
cording to the following convention, with CPOL as the
high order bit and CPHA as the low order bit:

For “Microchip PIC” / “ARM-based” microcontrollers
(note that NCPHA 1is the inversion of CPHA):

For PIC32MX : SPI mode configure CKP,CKE and SMP
bits.Set SMP bit,and CKP,CKE two bits configured as
above table.

For other microcontrollers:

Another commonly used notation represents the mode as
a (CPOL, CPHA) tuple; e.g., the value '(0, 1)’ would in-
dicate CPOL=0 and CPHA=1.

9.2.4 Independent slave configuration

SCLK » SCLK
MOSI » MOSI SPI
SPI MISO |+ MISO Slave
Master Ss1 »| SS
552
553 |—
» SCLK
» MOSI SPI
MIsO Slave
» S5
—| SCLK
» MOSI SPI
MIsO Slave
> SS

Typical SPI bus: master and three independent slaves

In the independent slave configuration, there is an inde-
pendent chip select line for each slave. A pull-up resistor
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between power source and chip select line is highly rec-
ommended for each independent device to reduce cross-
talk between devices.””) This is the way SPI is normally
used. Since the MISO pins of the slaves are connected
together, they are required to be tri-state pins (high, low
or high-impedance).

9.2.5 Daisy chain configuration

SCLK » SCLK
SPI MOSI » MOSI SPI
Master MISO |« MISO Slave
SS »| SS
» SCLK
» MOSI SPI
MisO Slave
»| SS
— SCLK
»| MOSI SPI
MisO Slave
» 5SS

Daisy-chained SPI bus: master and cooperative slaves

Some products that implement SPI may be connected in
a daisy chain configuration, the first slave output being
connected to the second slave input, etc. The SPI port of
each slave is designed to send out during the second group
of clock pulses an exact copy of the data it received during
the first group of clock pulses. The whole chain acts as a
communication shift register; daisy chaining is often done
with shift registers to provide a bank of inputs or outputs
through SPI. Such a feature only requires a single SS line
from the master, rather than a separate SS line for each
slave.[¥]

Applications that require a daisy chain configuration in-
clude SGPIO and JTAG.

9.2.6 Valid communications

Some slave devices are designed to ignore any SPI com-
munications in which the number of clock pulses is
greater than specified. Others do not care, ignoring ex-
tra inputs and continuing to shift the same output bit. It
is common for different devices to use SPI communica-
tions with different lengths, as, for example, when SPI is
used to access the scan chain of a digital IC by issuing
a command word of one size (perhaps 32 bits) and then
getting a response of a different size (perhaps 153 bits,
one for each pin in that scan chain).
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9.2.7 Interrupts

SPI devices sometimes use another signal line to send an
interrupt signal to a host CPU. Examples include pen-
down interrupts from touchscreen sensors, thermal limit
alerts from temperature sensors, alarms issued by real
time clock chips, SDIO,"! and headset jack insertions
from the sound codec in a cell phone. Interrupts are not
covered by the SPI standard; their usage is neither forbid-
den nor specified by the standard.

9.2.8 Example of bit-banging the master
protocol

Below is an example of bit-banging the SPI protocol as
an SPI master with CPOL=0, CPHA=0, and eight bits
per transfer. The example is written in the C program-
ming language. Because this is CPOL=0 the clock must
be pulled low before the chip select is activated. The chip
select line must be activated, which normally means be-
ing toggled low, for the peripheral before the start of the
transfer, and then deactivated afterwards. Most peripher-
als allow or require several transfers while the select line
is low; this routine might be called several times before
deselecting the chip.

/* * Simultaneously transmit and receive a byte on the
SPI. * * Polarity and phase are assumed to be both
0, i.e.: * - input data is captured on rising edge of
SCLK. * - output data is propagated on falling edge
of SCLK. * * Returns the received byte. */ uint8_t
SPI_transfer_byte(uint8_t byte_out) { uint8_t byte_in =
0; uint8_t bit; for (bit = 0x80; bit; bit >>= 1) { /* Shift-
out a bit to the MOSI line */ write_MOSI((byte_out &
bit) 7 HIGH : LOW); /* Delay for at least the peer’s
setup time */ delay(SPI_SCLK_LOW_TIME); /¥ Pull
the clock line high */ write_ SCLK(HIGH); /* Shift-in a
bit from the MISO line */ if (read_MISO() == HIGH)
byte_in |= bit; /¥ Delay for at least the peer’s hold
time */ delay(SPI_SCLK_HIGH_TIME); /* Pull the
clock line low */ write_SCLK(LOW); } return byte_in; }

9.3 Pros and cons

9.3.1 Advantages

o Full duplex communication in the default version of
this protocol.

o Push-pull drivers (as opposed to open drain) provide
good signal integrity and high speed
e Higher throughput than I’C or SMBus

e Complete protocol flexibility for the bits transferred

e Not limited to 8-bit words
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e Arbitrary choice of message size, content, and
purpose

e Extremely simple hardware interfacing

e Typically lower power requirements than I°C
or SMBus due to less circuitry (including pull
up resistors)

e No arbitration or associated failure modes

e Slaves use the master’s clock, and do not need
precision oscillators

e Slaves do not need a unique address — unlike
I*C or GPIB or SCSI

e Transceivers are not needed

Uses only four pins on IC packages, and wires in
board layouts or connectors, much fewer than par-
allel interfaces

o At most one unique bus signal per device (chip se-
lect); all others are shared

Signals are unidirectional allowing for easy Galvanic
isolation

Not limited to any maximum clock speed, enabling
potentially high speed

9.3.2 Disadvantages

e Requires more pins on IC packages than I>C, even
in the three-wire variant

# No in-band addressing; out-of-band chip select sig-
nals are required on shared buses

e No hardware flow control by the slave (but the mas-
ter can delay the next clock edge to slow the transfer
rate)

e No hardware slave acknowledgment (the master
could be transmitting to nowhere and not know it)

o Typically supports only one master device (depends
on device’s hardware implementation)

e No error-checking protocol is defined

e Without a formal standard, validating conformance
is not possible

e Only handles short distances compared to RS-232,
RS-485, or CAN-bus

e Many existing variations, making it difficult to find
development tools like host adapters that support
those variations

e SPI does not support hot swapping (dynamically
adding nodes).



o Interrupts must either be implemented with out-of-
band signals or be faked by using periodic polling
similarly to USB 1.1 and 2.0

e Some variants like Multi I/O SPI and three-wire se-
rial buses defined below are half-duplex.

9.4 Applications

The board real estate savings compared to a parallel I/0
bus are significant, and have earned SPI a solid role in
embedded systems. That is true for most system-on-
a-chip processors, both with higher end 32-bit proces-
sors such as those using ARM, MIPS, or PowerPC and
with other microcontrollers such as the AVR, PIC, and
MSP430. These chips usually include SPI controllers
capable of running in either master or slave mode. In-
system programmable AVR controllers (including blank
ones) can be programmed using an SPI interface.!)

Chip or FPGA based designs sometimes use SPI to com-
municate between internal components; on-chip real es-
tate can be as costly as its on-board cousin.

The full-duplex capability makes SPI very simple and ef-
ficient for single master/single slave applications. Some
devices use the full-duplex mode to implement an effi-
cient, swift data stream for applications such as digital
audio, digital signal processing, or telecommunications
channels, but most off -the-shelf chips stick to half-duplex
request/response protocols.

SPI is used to talk to a variety of peripherals, such as

e Sensors: temperature, pressure, ADC, touch-

screens, video game controllers

o Control devices: audio codecs, digital potentiome-
ters, DAC

e Camera lenses: Canon EF lens mount

e Communications: Ethernet, USB, USART, CAN,
IEEE 802.15.4, IEEE 802.11, handheld video

games
e Memory: flash and EEPROM

e Real-time clocks

e LCD, sometimes even for managing image data

e Any MMC or SD card (including SDIO variant®!)

For high performance systems, FPGAs sometimes use
SPI to interface as a slave to a host, as a master to sen-
sors, or for flash memory used to bootstrap if they are
SRAM-based.

Although there are some similarities between the SPI bus
and the JTAG (IEEE 1149.1-2013) protocol, They are
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not interchangeable. The SPI bus is intended for high
speed, on board initialization of device peripherals, while
the JTAG protocol is intended to provide reliable test ac-
cess to the I/O pins from an off board controller with
less precise signal delay and skew parameters. While
not strictly a level sensitive interface, the JTAG proto-
col supports the recovery of both setup and hold viola-
tions between JTAG devices by reducing the clock rate
or changing the clock’s duty cycles. Consequently, the
JTAG interface is not intended to support extremely high
data rates.”)

SGPIO is essentially another (incompatible) application
stack for SPI designed for particular backplane manage-
ment activities. SGPIO uses 3-bit messages.

9.5 Standards

The SPI bus is a de facto standard. However, the lack of a
formal standard is reflected in a wide variety of protocol
options. Different word sizes are common. Every device
defines its own protocol, including whether it supports
commands at all. Some devices are transmit-only; others
are receive-only. Chip selects are sometimes active-high
rather than active-low. Some protocols send the least sig-
nificant bit first.

Some devices even have minor variances from the
CPOL/CPHA modes described above. Sending data
from slave to master may use the opposite clock edge as
master to slave. Devices often require extra clock idle
time before the first clock or after the last one, or be-
tween a command and its response. Some devices have
two clocks, one to read data, and another to transmit it
into the device. Many of the read clocks run from the
chip select line.

Some devices require an additional flow control signal
from slave to master, indicating when data are ready. This
leads to a 5-wire protocol instead of the usual 4. Such a
ready or enable signal is often active-low, and needs to
be enabled at key points such as after commands or be-
tween words. Without such a signal, data transfer rates
may need to be slowed down significantly, or protocols
may need to have dummy bytes inserted, to accommodate
the worst case for the slave response time. Examples in-
clude initiating an ADC conversion, addressing the right
page of flash memory, and processing enough of a com-
mand that device firmware can load the first word of the
response. (Many SPI masters do not support that signal
directly, and instead rely on fixed delays.)

Many SPI chips only support messages that are multiples
of 8 bits. Such chips can not interoperate with the JTAG
or SGPIO protocols, or any other protocol that requires
messages that are not multiples of 8 bits.

There are also hardware-level differences. Some chips
combine MOSI and MISO into a single data line (SI/SO);
this is sometimes called 'three-wire' signaling (in contrast
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to normal 'four-wire' SPI). Another variation of SPI re-
moves the chip select line, managing protocol state ma-
chine entry/exit using other methods. Anyone needing
an external connector for SPI defines their own: UEXT,
JTAG connector, Secure Digital card socket, etc. Signal
levels depend entirely on the chips involved.

SafeSPI is an industry standard for SPI in automotive ap-
plications. Its main focus is the transmission of sensor
data between different devices.

9.6 Development tools

When developing or troubleshooting systems using SPI,
visibility at the level of hardware signals can be important.

9.6.1 Host adapters

There are a number of USB hardware solutions to provide
computers, running Linux, Mac, or Windows, SPI mas-
ter and/or slave capabilities. Many of them also provide
scripting and/or programming capabilities (Visual Basic,
C/C++, VHDL etc.).

An SPT host adapter lets the user play the role of a master
on an SPI bus directly from PC. They are used for em-
bedded systems, chips (FPGA/ASIC/SoC) and periph-
eral testing, programming and debugging.

The key parameters of SPI adapters are: the maximum
supported frequency for the serial interface, command-
to-command latency and the maximum length for SPI
commands. Itis possible to find SPI adapters on the mar-
ket today that support up to 100 MHz serial interfaces,
with virtually unlimited access length.

SPI protocol being a de facto standard, some SPI host
adapters also have the ability of supporting other proto-
cols beyond the traditional 4-wires SPI (for example, sup-
port of quad-SPI protocol or other custom serial protocol
that derive from SPIBD),

Examples of SPI adapters (manufacturers in alphabet-
ical order):

9.6.2 Protocol analyzers

SPI protocol analyzers are tools which sample an SPI bus
and decode the electrical signals to provide a higher-level
view of the data being transmitted on a specific bus.

Examples of SPI protocol analyzers (manufacturers in
alphabetical order):

9.6.3 Oscilloscopes

Every major oscilloscope vendor offers oscilloscope-
based triggering and protocol decoding for SP1. Most sup-
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port 2-, 3-, and 4-wire SPI. The triggering and decoding
capability is typically offered as an optional extra. SPI
signals can be accessed via analog oscilloscope channels
or with digital MSO channels.")

9.6.4 Logic analyzers

When developing and/or troubleshooting the SPI bus, ex-
amination of hardware signals can be very important.
Logic analyzers are tools which collect, analyze, decode,
and store signals so people can view the high-speed wave-
forms at their leisure. Logic analyzers display time-
stamps of each signal level change, which can help find
protocol problems. Most logic analyzers have the capa-
bility to decode bus signals into high-level protocol data
and show ASCII data.

9.7 Related terms

9.7.1 Intelligent SPI controllers

A queued serial peripheral interface (QSPI) is a type
of SPI controller that uses a data queue to transfer data
across the SPT bus."' It has a wrap-around mode allow-
ing continuous transfers to and from the queue with only
intermittent attention from the CPU. Consequently, the
peripherals appear to the CPU as memory-mapped par-
allel devices. This feature is useful in applications such as
control of an A/D converter. Other programmable fea-
tures in QSPI are chip selects and transfer length/delay.

SPI controllers from different vendors support different
feature sets; such DMA queues are not uncommon, al-
though they may be associated with separate DMA en-
gines rather than the SPI controller itself, such as used by
multichannel buffered serial port (MCBSP).['!] Most
SPI master controllers integrate support for up to four
chip selects,!?! although some require chip selects to be
managed separately through GPIO lines.

9.7.2 Microwire
Microwire,!3 often spelled pWire, is essentially a prede-
cessor of SPI and a trademark of National Semiconduc-
tor. It's a strict subset of SPI: half-duplex, and using SPI
mode 0. Microwire chips tend to need slower clock rates
than newer SPI versions; perhaps 2 MHz vs. 20 MHz.
Some Microwire chips also support a three-wire mode,
which fits neatly with the restriction to half-duplex.

9.7.3 Microwire/Plus

Microwire/Plus!'¥ is an enhancement of Microwire and
features full-duplex communication and support for SPI
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modes 0 and 1. There was no specified improvement in
serial clock speed.

9.7.4 Three-wire serial buses

As mentioned, one variant of SPI uses single bidirectional
data line (slave out/slave in, called SISO) instead of two
unidirectional ones (MOSI and MISO). This variant is
restricted to a half duplex mode. It tends to be used for
lower performance parts, such as small EEPROMSs used
only during system startup and certain sensors, and Mi-
crowire. Few SPI master controllers support this mode;
although it can often be easily bit-banged in software.

9.7.5 Multi I/0 SPI

As opposed to three-wire serial buses, multi I/O SPI uses
multiple parallel data lines (e.g., IO0 to IO3) to increase
throughput. Dual I/O SPI using two data lines has compa-
rable throughput to fast single I/O (MISO/MOSI). Quad
I/O SPI using four data lines has approximately double
the throughput.['>1 Multi I/O SPI devices tend to be half
duplex similar to three-wire devices to avoid adding too
many pins. These serial memory devices combine the
advantage of more speed with reduced pin count as com-
pared to paralle] memory.

9.7.6 mSPI
SCLK » SCLK
MOS| » MOSI mSPI
mSPI MISO 1« MISO Slave
Master SS » 55
» SCLK
» MOSI mSPI
MISO Slave
» SS
—»| SCLK
» MOSI mSPI
MISO Slave
» S5

Typical mSPI bus: master and three independent slaves

mSPI (mini-SPI) is a modification initially developed by
Dimitech for their programmable modules. Unlike the
standard SPL, four signal lines are always required no mat-
ter of the number of slave devices. Its overall simplicity
allows the use of standard SPI controllers with a very thin
software layer.

All slave devices share the same SS (Slave Select; active
low) line, along with the other three SPI signals: SCLK,
MOSI and MISO. Additionally all slave devices normally
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have their MISO line disconnected from the bus in a high
impedance state. As in the standard SPI, begin of trans-
mission is marked by the activation of the SS line low and
the end is marked by its return to high. mSPI requires
the bus master to issue a “slave address” (typically 8 bits)
as mandatory first word in every transmission. Since all
slave devices share the same SS line, the address word
will be received by all of them at the same time. From
that point further, only the device with the specified ad-
dress will connect its MISO line to the bus and start com-
municating, while all other slave devices will ignore any
data and wait for a new start of transmission and address.
mSPI solves some of the basic disadvantages of the stan-
dard SPI at the expense of a slight decrease in the overall
communication speed due to the initial addressing.

9.7.7 Intel Enhanced Serial Peripheral In-
terface Bus

Intel is currently developing a successor to its Low Pin
Count (LPC) bus that it calls the Enhanced Serial Periph-
eral Interface Bus, or eSPI for short. Intel aims to allow
the reduction in the number of pins required on mother-
boards compared to systems using LPC, have more avail-
able throughput than LPC, reduce the working voltage
to 1.8 volts to facilitate smaller chip manufacturing pro-
cesses, allow eSPI peripherals to share SPI flash devices
with the host (the LPC bus did not allow firmware hubs to
be used by LPC peripherals), tunnel previous out-of-band
pins through the eSPI bus, and allow system designers to
trade off cost and performance.!16!

The eSPI bus can either be shared with SPI devices to
save pins or be separate from the SPI bus to allow more
performance, especially when eSPI devices need to use
SPI flash devices.[1¢!

This proposed standard defines an Alert# signal that is
used by an eSPI slave to request service from the mas-
ter. In a performance-oriented design or a design with
only one eSPI slave, each eSPI slave will have its Alert#
pin connected to an Alert# pin on the eSPI master that is
dedicated to each slave, allowing the eSPI master to grant
low-latency service because the eSPI master will know
which eSPI slave needs service and will not need to poll
all of the slaves to determine which device needs service.
In a budget design with more than one eSPI slave, all of
the Alert# pins of the slaves are connected to one Alert#
pin on the eSPI master in a wired-OR connection, which
will require the master to poll all the slaves to determine
which ones need service when the Alert# signal is pulled
low by one or more peripherals that need service. Only
after all of the devices are serviced will the Alert# sig-
nal be pulled high due to none of the eSPI slaves needing
service and therefore pulling the Alert# signal low.[!

This proposed standard allows designers to use 1-bit, 2-
bit, or 4-bit communications at speeds from 20 to 66 MHz
to further allow designers to trade off performance and
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cost.[16]

All communications that were out-of-band of the
LPC bus like general-purpose input/output (GPIO) and
System Management Bus (SMBus) are tunneled through
the eSPI bus via virtual wire cycles and out-of-band mes-
sage cycles respectively in order to remove those pins
from motherboard designs using eSPL®!

This proposed standard will support standard memory cy-
cles with lengths of 1 byte to 4 kibibytes of data, short
memory cycles with lengths of 1, 2, or 4 bytes that have
much less overhead compared to standard memory cy-
cles, and I/O cycles with lengths of 1, 2, or 4 bytes
of data which are low overhead as well. This signifi-
cantly reduces overhead compared to the LPC bus, whose
throughput is nearly totally dominated by overhead. The
standard memory cycle allows a length of anywhere from
1 byte to 4 kibibytes in order to allow its overhead to be
amortized over a large transaction. eSPI slaves are al-
lowed to initiate bus master versions of all of the memory
cycles. Bus master I/O cycles, which were introduced by
the LPC bus specification, and ISA-style DMA including
the 32-bit variant introduced by the LPC bus specifica-
tion, are not present in eSPIL. Therefore, bus master mem-
ory cycles are the only allowed DMA in this standard.['!

eSPI slaves are allowed to use the eSPI master as a proxy
to perform flash operations on a standard SPI flash mem-
ory slave on behalf of the requesting eSPI slave.['¢]

64-bit memory addressing is also added, but is only per-
mitted when there is no equivalent 32-bit address.!®]

9.8 See also

e List of network buses
e UEXT Connector.

e Microsecond Bus.
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Analog-to-digital converter

4-channel converter

stereo  multiplexed analog-to-digital
WM87758EDS made by Wolfson Microelectronics placed on an
X-Fi Fatallty Pro sound card.

An analog-to-digital converter (ADC, A/D, or A to D)
is a device that converts a continuous physical quantity
(usually voltage) to a digital number that represents the
quantity’s amplitude.

The conversion involves quantization of the input, so it
necessarily introduces a small amount of error. Further-
more, instead of continuously performing the conversion,
an ADC does the conversion periodically, sampling the
input. The result is a sequence of digital values that have
been converted from a continuous-time and continuous-
amplitude analog signal to a discrete-time and discrete-
amplitude digital signal.

An ADC is defined by its bandwidth (the range of fre-
quencies it can measure) and its signal to noise ratio (how
accurately it can measure a signal relative to the noise it
introduces). The actual bandwidth of an ADC is char-
acterized primarily by its sampling rate, and to a lesser
extent by how it handles errors such as aliasing. The
dynamic range of an ADC is influenced by many fac-
tors, including the resolution (the number of output levels
it can quantize a signal to), linearity and accuracy (how
well the quantization levels match the true analog signal)
and jitter (small timing errors that introduce additional
noise). The dynamic range of an ADC is often summa-
rized in terms of its effective number of bits (ENOB), the
number of bits of each measure it returns that are on av-

erage not noise. An ideal ADC has an ENOB equal to its
resolution. ADCs are chosen to match the bandwidth and
required signal to noise ratio of the signal to be quantized.
If an ADC operates at a sampling rate greater than twice
the bandwidth of the signal, then perfect reconstruction
is possible given an ideal ADC and neglecting quantiza-
tion error. The presence of quantization error limits the
dynamic range of even an ideal ADC, however, if the dy-
namic range of the ADC exceeds that of the input signal,
its effects may be neglected resulting in an essentially per-
fect digital representation of the input signal.

An ADC may also provide an isolated measurement such
as an electronic device that converts an input analog
voltage or current to a digital number proportional to
the magnitude of the voltage or current. However, some
non-electronic or only partially electronic devices, such
as rotary encoders, can also be considered ADCs. The
digital output may use different coding schemes. Typ-
ically the digital output will be a two’s complement bi-
nary number that is proportional to the input, but there
are other possibilities. An encoder, for example, might
output a Gray code.

The inverse operation is performed by a digital-to-analog
converter (DAC).

10.1 Concepts

10.1.1 Resolution

The resolution of the converter indicates the number of
discrete values it can produce over the range of analog
values. The resolution determines the magnitude of the
quantization error and therefore determines the maxi-
mum possible average signal to noise ratio for an ideal
ADC without the use of oversampling. The values are
usually stored electronically in binary form, so the resolu-
tionis usually expressed in bits. In consequence, the num-
ber of discrete values available, or “levels”, is assumed to
be a power of two. For example, an ADC with a resolu-
tion of 8 bits can encode an analog input to one in 256
different levels, since 2% = 256. The values can repre-
sent the ranges from 0 to 255 (i.e. unsigned integer) or
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Fig. 1. An 8-level ADC coding scheme.

from -128 to 127 (i.e. signed integer), depending on the
application.

Resolution can also be defined electrically, and expressed
in volts. The minimum change in voltage required to
guarantee a change in the output code level is called the
least significant bit (LSB) voltage. The resolution Q of
the ADC is equal to the LSB voltage. The voltage resolu-
tion of an ADC is equal toits overall voltage measurement
range divided by the number of discrete values:

EFSR

oM

Q=

where M is the ADC’s resolution in bits and EFSR is the
full scale voltage range (also called 'span'). EFSR is given

by

Ersr = Vrerti — VRefLow,

where VR H; and VRL,,, are the upper and lower ex-
tremes, respectively, of the voltages that can be coded.

Normally, the number of voltage intervals is given by

N =2M

where M is the ADC’s resolution in bits.!]

That is, one voltage interval is assigned in between two
consecutive code levels.

Example:
e Coding scheme as in figure 1 (assume input signal
x(t) = Acos(t), A =5V)
o Full scale measurement range = —5 to 5 volts

e ADC resolution is 8 bits: 2% = 256 quantization lev-
els (codes)

49

e ADC voltage resolution, 0 = (10 V-0V) /256 =
10V /256~ 0.039 V=39 mV.

In practice, the useful resolution of a converter is lim-
ited by the best signal-to-noise ratio (SNR) that can be
achieved for a digitized signal. An ADC can resolve a sig-
nal to only a certain number of bits of resolution, called
the effective number of bits (ENOB). One effective bit
of resolution changes the signal-to-noise ratio of the dig-
itized signal by 6 dB, if the resolution is limited by the
ADC. If a preamplifier has been used prior to A/D con-
version, the noise introduced by the amplifier can be an
important contributing factor towards the overall SNR.

o Speciral view of a sinusold and ts quaniization noise-floor

]
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Comparison of quantizing a sinusoid to 64 levels (6 bits) and 256
levels (8 bits). The additive noise created by 6-bit quantization is
12 dB greater than the noise created by 8-bit quantization. When
the spectral distribution is flat, as in this example, the 12 dB dif-
ference manifests as a measurable difference in the noise floors.

Quantization error

Main article: Quantization error

Quantization error is the noise introduced by quantization
in an ideal ADC. It is a rounding error between the analog
input voltage to the ADC and the output digitized value.
The noise is non-linear and signal-dependent.

In an ideal analog-to-digital converter, where the quanti-
zation error is uniformly distributed between —1/2 LSB
and +1/2 LSB, and the signal has a uniform distri-
bution covering all quantization levels, the Signal-to-
quantization-noise ratio (SQNR) can be calculated from

SQNR = 20log,,(29) ~ 6.02 - Q dB @

Where Q is the number of quantization bits. For exam-
ple, a 16-bit ADC has a maximum signal-to-noise ratio
of 6.02 x 16 = 96.3 dB, and therefore the quantization
error is 96.3 dB below the maximum level. Quantization
error is distributed from DC to the Nyquist frequency,
consequently if part of the ADC’s bandwidth is not used
(as in oversampling), some of the quantization error will
fall out of band, effectively improving the SQNR. In an
oversampled system, noise shaping can be used to further
increase SQNR by forcing more quantization error out of
the band.
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Dither
Main article: dither

In ADCs, performance can usually be improved using
dither. This is a very small amount of random noise
(white noise), which is added to the input before conver-
sion.

Its effect is to cause the state of the LSB to randomly os-
cillate between 0 and 1 in the presence of very low levels
of input, rather than sticking at a fixed value. Rather than
the signal simply getting cut off altogether at this low level
(which is only being quantized to a resolution of 1 bit), it
extends the effective range of signals that the ADC can
convert, at the expense of a slight increase in noise — ef-
fectively the quantization error is diffused across a series
of noise values which is far less objectionable than a hard
cutoff. The result is an accurate representation of the sig-
nal over time. A suitable filter at the output of the system
can thus recover this small signal variation.

An audio signal of very low level (with respect to the bit
depth of the ADC) sampled without dither sounds ex-
tremely distorted and unpleasant. Without dither the low
level may cause the least significant bit to “stick” at 0 or
1. With dithering, the true level of the audio may be cal-
culated by averaging the actual quantized sample with a
series of other samples [the dither] that are recorded over
time.

A virtually identical process, also called dither or
dithering, is often used when quantizing photographic
images to a fewer number of bits per pixel—the image be-
comes noisier but to the eye looks far more realistic than
the quantized image, which otherwise becomes banded.
This analogous process may help to visualize the effect
of dither on an analogue audio signal that is converted to
digital.

Dithering is also used in integrating systems such as
electricity meters. Since the values are added together,
the dithering produces results that are more exact than
the LSB of the analog-to-digital converter.

Note that dither can only increase the resolution of a sam-
pler, it cannot improve the linearity, and thus accuracy
does not necessarily improve.

10.1.2 Accuracy

An ADC has several sources of errors. Quantization error
and (assuming the ADC is intended to be linear) non-
linearity are intrinsic to any analog-to-digital conversion.

These errors are measured in a unit called the least signifi-
cant bit (LSB). In the above example of an eight-bit ADC,
an error of one LSB is 1/256 of the full signal range, or
about 0.4%.
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Non-linearity

All ADC:s suffer from non-linearity errors caused by their
physical imperfections, causing their output to deviate
from a linear function (or some other function, in the case
of a deliberately non-linear ADC) of their input. These
errors can sometimes be mitigated by calibration, or pre-
vented by testing.

Important parameters for linearity are integral non-
linearity (INL) and differential non-linearity (DNL).
These non-linearities reduce the dynamic range of the sig-
nals that can be digitized by the ADC, also reducing the
effective resolution of the ADC.

10.1.3 Jitter

When digitizing a sine wave x(t) = Asin (2w fyt) , the
use of a non-ideal sampling clock will result in some un-
certainty in when samples are recorded. Provided that
the actual sampling time uncertainty due to the clock jitter
is At , the error caused by this phenomenon can be es-
timated as E,p, < |2'(t)At| < 2ArmfyAt . This will
result in additional recorded noise that will reduce the
effective number of bits (ENOB) below that predicted by
quantization error alone.

The error is zero for DC, small at low frequencies, but
significant when high frequencies have high amplitudes.
This effect can be ignored if it is drowned out by the
guantizing error. Jitter requirements can be calculated
using the following formula: At < ﬁfo , where q is the
number of ADC bits.

Clock jitter is caused by phase noise. 14! The resolution
of ADCs with a digitization bandwidth between 1 MHz
and 1 GHz is limited by jitter.[!

When sampling audio signals at 44.1 kHz, the ant-
aliasing filter should have eliminated all frequencies above
22kHz. The input frequency (in this case, < 22 kHz), not
the ADC clock frequency, is the determining factor with
respect to jitter performance. ]

10.1.4 Sampling rate

Main article: Sampling rate
See also: Sampling (signal processing)

The analog signal is continuous in time and it is necessary
to convert this to a flow of digital values. It is therefore
required to define the rate at which new digital values are
sampled from the analog signal. The rate of new values
is called the sampling rate or sampling frequency of the
converter.
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A continuously varying bandlimited signal can be sam-
pled (that is, the signal values at intervals of time T,
the sampling time, are measured and stored) and then
the original signal can be exactly reproduced from the
discrete-time values by an interpolation formula. The ac-
curacy is limited by quantization error. However, this
faithful reproduction is only possible if the sampling rate
is higher than twice the highest frequency of the sig-
nal. This is essentially what is embodied in the Shannon-
Nyquist sampling theorem.

Since a practical ADC cannot make an instantaneous con-
version, the input value must necessarily be held constant
during the time that the converter performs a conversion
(called the conversion time). An input circuit called a
sample and hold performs this task—in most cases by us-
ing a capacitor to store the analog voltage at the input,
and using an electronic switch or gate to disconnect the
capacitor from the input. Many ADC integrated circuits
include the sample and hold subsystem internally.

Aliasing

Main article: Aliasing
See also: Undersampling

An ADC works by sampling the value of the input at dis-
crete intervals in time. Provided that the input is sam-
pled above the Nyquist rate, defined as twice the high-
est frequency of interest, then all frequencies in the sig-
nal can be reconstructed. If frequencies above half the
Nyquist rate are sampled, they are incorrectly detected as
lower frequencies, a process referred to as aliasing. Alias-
ing occurs because instantaneously sampling a function
at two or fewer times per cycle results in missed cycles,
and therefore the appearance of an incorrectly lower fre-
quency. For example, a 2 kHz sine wave being sampled
at 1.5 kHz would be reconstructed as a 500 Hz sine wave.

To avoid aliasing, the input to an ADC must be low-pass
filtered to remove frequencies above half the sampling
rate. This filter is called an anti-aliasing filter, and 1is
essential for a practical ADC system that is applied to
analog signals with higher frequency content. In applica-
tions where protection against aliasing is essential, over-
sampling may be used to greatly reduce or even eliminate
it.

Although aliasing in most systems is unwanted, it should
also be noted that it can be exploited to provide simulta-
neous down-mixing of a band-limited high frequency sig-
nal (see undersampling and frequency mixer). The alias
is effectively the lower heterodyne of the signal frequency
and sampling frequency.”!
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Oversampling

Main article: Oversampling

Signals are often sampled at the minimum rate required,
for economy, with the result that the quantization noise
introduced is white noise spread over the whole pass band
of the converter. If a signal is sampled at a rate much
higher than the Nyquist rate and then digitally filtered to
limit it to the signal bandwidth there are the following
advantages:

o digital filters can have better properties (sharper
rolloff, phase) than analogue filters, so a sharper
anti-aliasing filter can be realised and then the signal
can be downsampled giving a better result

e a 20-bit ADC can be made to act as a 24-bit ADC
with 256x oversampling

o the signal-to-noise ratio due to quantization noise
will be higher than if the whole available band had
been used. With this technique, it is possible to ob-
tain an effective resolution larger than that provided
by the converter alone

e The improvement in SNR is 3 dB (equivalent to
0.5 bits) per octave of oversampling which is not
sufficient for many applications. Therefore, over-
sampling is usually coupled with noise shaping (see
sigma-delta modulators). With noise shaping, the
improvement is 6L.+3 dB per octave where L is the
order of loop filter used for noise shaping. e.g. —a
2nd order loop filter will provide an improvement of
15 dB/octave.

Oversampling is typically used in audio frequency ADCs
where the required sampling rate (typically 44.1 or 48
kHz) is very low compared to the clock speed of typi-
cal transistor circuits (>1 MHz). In this case, by using
the extra bandwidth to distribute quantization error onto
out of band frequencies, the accuracy of the ADC can be
greatly increased at no cost. Furthermore, as any aliased
signals are also typically out of band, aliasing can often
be completely eliminated using very low cost filters.

10.1.5 Relative speed and precision

The speed of an ADC varies by type. The Wilkinson
ADC is limited by the clock rate which is processable
by current digital circuits. Currently, frequencies up to
300 MHz are possible.[®! For a successive-approximation
ADC, the conversion time scales with the logarithm of
the resolution, e.g. the number of bits. Thus for high res-
olution, it is possible that the successive-approximation
ADC is faster than the Wilkinson. However, the time
consuming steps in the Wilkinson are digital, while those
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in the successive-approximation are analog. Since ana-
log is inherently slower than digital, as the resolution in-
creases, the time required also increases. Thus there are
competing processes at work. Flash ADCs are certainly
the fastest type of the three. The conversion is basically
performed in a single parallel step. For an 8-bit unit, con-
version takes place in a few tens of nanoseconds.

There is, as expected, somewhat of a tradeoff between
speed and precision. Flash ADCs have drifts and un-
certainties associated with the comparator levels. This
results in poor linearity. For successive-approximation
ADCs, poor linearity is also present, but less so than
for flash ADCs. Here, non-linearity arises from accu-
mulating errors from the subtraction processes. Wilkin-
son ADCs have the highest linearity of the three. These
have the best differential non-linearity. The other types
require channel smoothing to achieve the level of the
Wilkinson. 11101

10.1.6 The sliding scale principle

The sliding scale or randomizing method can be em-
ployed to greatly improve the linearity of any type of
ADC, but especially flash and successive approximation
types. For any ADC the mapping from input voltage to
digital output value is not exactly a floor or ceiling func-
tion as it should be. Under normal conditions, a pulse
of a particular amplitude is always converted to a digital
value. The problem lies in that the ranges of analog val-
ues for the digitized values are not all of the same width,
and the differential linearity decreases proportionally with
the divergence from the average width. The sliding scale
principle uses an averaging effect to overcome this phe-
nomenon. A random, but known analog voltage is added
to the sampled input voltage. It is then converted to digi-
tal form, and the equivalent digital amount is subtracted,
thus restoringit to its original value. The advantage is that
the conversion has taken place at a random point. The
statistical distribution of the final levels is decided by a
weighted average over a region of the range of the ADC.
This in turn desensitizes it to the width of any specific
level.[111112]

10.2 ADC types

These are the most common ways of implementing an
electronic ADC:

¢ Adirect-conversion ADC or flash ADC has a bank
of comparators sampling the input signal in paral-
lel, each firing for their decoded voltage range. The
comparator bank feeds a logic circuit that generates
a code for each voltage range. Direct conversion is
very fast, capable of gigahertz sampling rates, but
usually has only 8 bits of resolution or fewer, since
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the number of comparators needed, 2~ — 1, dou-
bles with each additional bit, requiring a large, ex-
pensive circuit. ADCs of this type have a large die
size, a high input capacitance, high power dissipa-
tion, and are prone to produce glitches at the output
(by outputting an out-of-sequence code). Scaling to
newer submicrometre technologies does not help as
the device mismatch is the dominant design limita-
tion. They are often used for video, wideband com-
munications or other fast signals in optical storage.

A successive-approximation ADC uses a com-
parator to successively narrow a range that contains
the input voltage. At each successive step, the con-
verter compares the input voltage to the output of an
internal digital to analog converter which might rep-
resent the midpoint of a selected voltage range. At
each step in this process, the approximation is stored
in a successive approximation register (SAR). For
example, consider an input voltage of 6.3 V and the
initial range is O to 16 V. For the first step, the input
6.3 V is compared to 8 V (the midpoint of the 0-
16 V range). The comparator reports that the input
voltage is less than 8 V, so the SAR is updated to
narrow the range to 0-8 V. For the second step, the
input voltage is compared to 4 V (midpoint of 0-8).
The comparator reports the input voltage is above 4
V, so the SAR is updated to reflect the input voltage
is in the range 4-8 V. For the third step, the input
voltage is compared with 6 V (halfway between4 V
and 8 V); the comparator reports the input voltage is
greater than 6 volts, and search range becomes 6—8
V. The steps are continued until the desired resolu-
tion is reached.

A ramp-compare ADC produces a saw-tooth sig-
nal that ramps up or down then quickly returns to
zero. When the ramp starts, a timer starts count-
ing. When the ramp voltage matches the input, a
comparator fires, and the timer’s value is recorded.
Timed ramp converters require the least number
of transistors. The ramp time is sensitive to tem-
perature because the circuit generating the ramp
is often a simple oscillator. There are two solu-
tions: use a clocked counter driving a DAC and
then use the comparator to preserve the counter’s
value, or calibrate the timed ramp. A special advan-
tage of the ramp-compare system is that compar-
ing a second signal just requires another compara-
tor, and another register to store the voltage value.
A very simple (non-linear) ramp-converter can be
implemented with a microcontroller and one resis-
tor and capacitor.'¥! Vice versa, a filled capacitor
can be taken from an integrator, time-to-amplitude
converter, phase detector, sample and hold circuit,
or peak and hold circuit and discharged. This has
the advantage that a slow comparator cannot be dis-
turbed by fast input changes.

e The Wilkinson ADC was designed by D. H.
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Wilkinson in 1950. The Wilkinson ADC is based
on the comparison of an input voltage with that pro-
duced by a charging capacitor. The capacitor is al-
lowed to charge until its voltage is equal to the am-
plitude of the input pulse (a comparator determines
when this condition has been reached). Then, the
capacitor is allowed to discharge linearly, which pro-
duces a ramp voltage. At the point when the capaci-
tor begins to discharge, a gate pulse is initiated. The
gate pulse remains on until the capacitor is com-
pletely discharged. Thus the duration of the gate
pulse is directly proportional to the amplitude of the
input pulse. This gate pulse operates a linear gate
which receives pulses from a high-frequency oscil-
lator clock. While the gate is open, a discrete num-
ber of clock pulses pass through the linear gate and
are counted by the address register. The time the
linear gate is open is proportional to the amplitude
of the input pulse, thus the number of clock pulses
recorded in the address register is proportional also.
Alternatively, the charging of the capacitor could be
monitored, rather than the discharge.[!41115]

An integrating ADC (also dual-slope or multi-
slope ADC) applies the unknown input voltage to
the input of an integrator and allows the voltage to
ramp for a fixed time period (the run-up period).
Then a known reference voltage of opposite polar-
ity is applied to the integrator and is allowed to ramp
until the integrator output returns to zero (the run-
down period). The input voltage is computed as a
function of the reference voltage, the constant run-
up time period, and the measured run-down time
period. The run-down time measurement is usually
made in units of the converter’s clock, so longer in-
tegration times allow for higher resolutions. Like-
wise, the speed of the converter can be improved
by sacrificing resolution. Converters of this type (or
variations on the concept) are used in most digital
voltmeters for their linearity and flexibility.

A delta-encoded ADC or counter-ramp has anup-
down counter that feeds a digital to analog converter
(DAC). The input signal and the DAC both go to a
comparator. The comparator controls the counter.
The circuit uses negative feedback from the com-
parator to adjust the counter until the DAC’s output
18 close enough to the input signal. The number is
read from the counter. Delta converters have very
wide ranges and high resolution, but the conversion
time is dependent on the input signal level, though
it will always have a guaranteed worst-case. Delta
converters are often very good choices to read real-
world signals. Most signals from physical systems
do not change abruptly. Some converters combine
the delta and successive approximation approaches;
this works especially well when high frequencies are
known to be small in magnitude.

e A pipeline ADC (also called subranging quan-
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tizer) uses two or more steps of subranging. First,
a coarse conversion is done. In a second step, the
difference to the input signal is determined with a
digital to analog converter (DAC). This difference
is then converted finer, and the results are combined
in a last step. This can be considered a refinement
of the successive-approximation ADC wherein the
feedback reference signal consists of the interim
conversion of a whole range of bits (for example,
four bits) rather than just the next-most-significant
bit. By combining the merits of the successive ap-
proximation and flash ADCs this type is fast, has a
high resolution, and only requires a small die size.

A sigma-delta ADC (also known as a delta-sigma
ADC) oversamples the desired signal by a large fac-
tor and filters the desired signal band. Generally, a
smaller number of bits than required are converted
using a Flash ADC after the filter. The resulting sig-
nal, along with the error generated by the discrete
levels of the Flash, is fed back and subtracted from
the input to the filter. This negative feedback has
the effect of noise shaping the error due to the Flash
so that it does not appear in the desired signal fre-
quencies. A digital filter (decimation filter) follows
the ADC which reduces the sampling rate, filters off
unwanted noise signal and increases the resolution
of the output (sigma-delta modulation, also called
delta-sigma modulation).

A time-interleaved ADC uses M parallel ADCs
where each ADC samples data every M:th cycle
of the effective sample clock. The result is that
the sample rate is increased M times compared
to what each individual ADC can manage. In
practice, the individual differences between the M
ADCs degrade the overall performance reducing the
SFDR.'6] However, technologies exist to correct for
these time-interleaving mismatch errors.

An ADC with intermediate FM stage first uses
a voltage-to-frequency converter to convert the de-
sired signal into an oscillating signal with a fre-
quency proportional to the voltage of the desired sig-
nal, and then uses a frequency counter to convert
that frequency into a digital count proportional to
the desired signal voltage. Longer integration times
allow for higher resolutions. Likewise, the speed of
the converter can be improved by sacrificing reso-
Iution. The two parts of the ADC may be widely
separated, with the frequency signal passed through
an opto-isolator or transmitted wirelessly. Some
such ADCs use sine wave or square wave frequency
modulation; others use pulse-frequency modulation.
Such ADCs were once the most popular way to show

a digital display of the status of a remote analog
sensor.[171[181[1911201[21]

There can be other ADCs that use a combination of elec-
tronics and other technologies:
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e A time-stretch analog-to-digital converter (TS-
ADC) digitizes a very wide bandwidth analog signal,
that cannot be digitized by a conventional electronic
ADC, by time-stretching the signal prior to digiti-
zation. It commonly uses a photonic preprocessor
frontend to time-stretch the signal, which effectively
slows the signal down in time and compresses its
bandwidth. As aresult, an electronic backend ADC,
that would have been too slow to capture the origi-
nal signal, can now capture this slowed down signal.
For continuous capture of the signal, the frontend
also divides the signal into multiple segments in ad-
dition to time-stretching. Each segment is individu-
ally digitized by a separate electronic ADC. Finally,
a digital signal processor rearranges the samples and
removes any distortions added by the frontend to
yield the binary data that is the digital representa-
tion of the original analog signal.

10.3 Commercial analog-to-digital
converters

Commercial ADCs are usually implemented as integrated
circuits.

Most converters sample with 6 to 24 bits of resolu-
tion, and produce fewer than 1 megasample per second.
Thermal noise generated by passive components such as
resistors masks the measurement when higher resolution
is desired. For audio applications and in room tempera-
tures, such noise is usually a little less than 1 pV (micro-
volt) of white noise. If the MSB corresponds to a standard
2 V of output signal, this translates to a noise-limited per-
formance that is less than 20~21 bits, and obviates the
need for any dithering. As of February 2002, Mega- and
giga-sample per second converters are available. Mega-
sample converters are required in digital video cameras,
video capture cards, and TV tuner cards to convert full-
speed analog video to digital video files.

Commercial converters usually have 20.5 to *1.5 LSB
error in their output.

In many cases, the most expensive part of an integrated
circuit is the pins, because they make the package larger,
and each pin has to be connected to the integrated cir-
cuit’s silicon. To save pins, it is common for slow ADCs
to send their data one bit at a time over a serial inter-
face to the computer, with the next bit coming out when
a clock signal changes state, say from 0 to 5 V. This
saves quite a few pins on the ADC package, and in many
cases, does not make the overall design any more com-
plex (even microprocessors which use memory-mapped
I/0 only need a few bits of a port to implement a serial
bus to an ADC).

Commercial ADCs often have several inputs that feed the
same converter, usually through an analog multiplexer.
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Different models of ADC may include sample and hold
circuits, instrumentation amplifiers or differential inputs,
where the quantity measured is the difference between
two voltages.

10.4 Applications

10.4.1 Music recording

Analog-to-digital converters are integral to current mu-
sic reproduction technology. People often produce mu-
sic on computers using an analog recording and therefore
need analog-to-digital converters to create the pulse-code
modulation (PCM) data streams that go onto compact
discs and digital music files.

The current crop of analog-to-digital converters utilized
in music can sample at rates up to 192 kilohertz. Consid-
erable literature exists on these matters, but commercial
considerations often play a significant role. Most high-
profile recording studios record in 24-bit/192-176.4 kHz
pulse-code modulation (PCM) or in Direct Stream Digi-
tal (DSD) formats, and then downsample or decimate the
signal for Red-Book CD production (44.1 kHz) or to 48
kHz for commonly used radio and television broadcast
applications.

10.4.2 Digital signal processing

People must use ADCs to process, store, or transport vir-
tually any analog signal in digital form. TV tuner cards,
for example, use fast video analog-to-digital converters.
Slow on-chip 8, 10, 12, or 16 bit analog-to-digital con-
verters are common in microcontrollers. Digital storage
oscilloscopes need very fast analog-to-digital converters,
also crucial for software defined radio and their new ap-
plications.

10.4.3 Scientific instruments

Digital imaging systems commonly use analog-to-digital
converters in digitizing pixels.

Some radar systems commonly use analog-to-digital con-
verters to convert signal strength to digital values for sub-
sequent signal processing. Many other in situ and remote
sensing systems commonly use analogous technology.

The number of binary bits in the resulting digitized nu-
meric values reflects the resolution, the number of unique
discrete levels of quantization (signal processing). The
correspondence between the analog signal and the digital
signal depends on the quantization error. The quantiza-
tion process must occur at an adequate speed, a constraint
that may limit the resolution of the digital signal.

Many sensors produce an analog signal; temperature,
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pressure, pH, light intensity etc. All these signals can be 10.8 Notes

amplified and fed to an ADC to produce a digital number
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VERSION” (PDF). Burr-Brown. Retrieved 1994-05-01.
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Counting Type ADC A simple tutorial showing how
to build your first ADC.

An Introduction to Delta Sigma Converters A very
nice overview of Delta-Sigma converter theory.
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e Digital Dynamic Analysis of A/D Conversion
Systems through Evaluation Software based on
FFT/DFT Analysis RF Expo East, 1987

o Which ADC Architecture Is Right for Your Appli-
cation? article by Walt Kester

e ADC and DAC Glossary Defines commonly used
technical terms.

e Introduction to ADC in AVR — Analog to digital
conversion with Atmel microcontrollers

e Signal processing and system aspects of time-
interleaved ADCs.

e Explanation of analog-digital converters with inter-
active principles of operations.
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Digital-to-analog converter

For digital television converter boxes, see digital televi-
sion adapter.
In electronics, a digital-to-analog converter (DAC,
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8-channel digital-to-analog converter Cirrus Logic CS4382 as
used in a soundcard.

D/A, D2A or D-to-A) is a function that converts digi-
tal data (usually binary) into an analog signal (current,
voltage, or electric charge). An analog-to-digital con-
verter (ADC) performs the reverse function. Unlike ana-
log signals, digital data can be transmitted, manipulated,
and stored without degradation, albeit with more com-
plex equipment. Buta DAC is needed to convert the dig-
ital signal to analog to drive an earphone or loudspeaker
amplifier in order to produce sound (analog air pressure
waves).

DACs and their inverse, ADCs, are part of an enabling
technology that has contributed greatly to the digital revo-
Iution. To illustrate, consider a typical long-distance tele-
phone call. The caller’s voice is converted into an analog
electrical signal by a microphone, then the analog signal
is converted to a digital stream by an ADC. The digital
stream is then divided into packets where it may be sent
along with other digital data, not necessarily audio. The
digital packets are then received at the destination, but
each packet may take a completely different route and
may not even arrive at the destination in the correct time
order. The digital voice data is then extracted from the
packets and assembled into a digital data stream. A DAC
converts this into an analog electrical signal, which drives
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an audio amplifier, which in turn drives a loudspeaker,
which finally produces sound.

There are several DAC architectures; the suitability of
a DAC for a particular application is determined by
six main parameters: physical size, power consumption,
resolution, speed, accuracy, cost. Due to the complexity
and the need for precisely matched components, all but
the most specialist DACs are implemented as integrated
circuits (ICs). Digital-to-analog conversion can degrade a
signal, so a DAC should be specified that has insignificant
errors in terms of the application.

DACs are commonly used in music players to convert
digital data streams into analog audio signals. They are
also used in televisions and mobile phones to convert dig-
ital video data into analog video signals which connect to
the screen drivers to display monochrome or color im-
ages. These two applications use DACs at opposite ends
of the speed/resolution trade-off. The audio DAC is a
low speed high resolution type while the video DAC is
a high speed low to medium resolution type. Discrete
DACs would typically be extremely high speed low reso-
lution power hungry types, as used in military radar sys-
tems. Very high speed test equipment, especially sam-
pling oscilloscopes, may also use discrete DACs.

11.1 Overview

f(t)l

N

Ideally sampled signal.

A DAC converts an abstract finite-precision number (usu-
ally a fixed-point binary number) into a physical quantity
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(e.g., a voltage or a pressure). In particular, DACs are
often used to convert finite-precision time series data to
a continually varying physical signal.

An ideal DAC converts the abstract numbers into a con-
ceptual sequence of impulses that are then processed by a
reconstruction filter using some form of interpolation to
fill in data between the impulses. A typical practical DAC
converts the numbers into a piecewise constant function
made up of a sequence of rectangular functions that is
modeled with the zero-order hold. Other DAC methods
(e.g., methods based on delta-sigma modulation) produce
a pulse-density modulated signal that can then be filtered
in a similar way to produce a smoothly varying signal.

As per the Nyquist—Shannon sampling theorem, a DAC
can reconstruct the original signal from the sampled
data provided that its bandwidth meets certain require-
ments (e.g., a baseband signal with bandwidth less than
the Nyquist frequency). Digital sampling introduces
quantization error that manifests as low-level noise added
to the reconstructed signal.

11.2 Practical operation

()

Piecewise constant output of an idealized DAC lacking a
reconstruction filter. In a practical DAC, a filter or the finite
bandwidth of the device smooths out the step response into a con-
finuous curve.

Instead of impulses, they update the analog voltage at
uniform sampling intervals, which are then often inter-
polated via a reconstruction filter to continuously varied
levels.

These numbers are written to the DAC, typically with a
clock signal that causes each number to be latched in se-
quence, at which time the DAC output voltage changes
rapidly from the previous value to the value represented
by the currently latched number. The effect of this is that
the output voltage is held in time at the current value until
the next input number is latched, resulting in a piecewise
constant or staircase-shaped output. This is equivalent to
a zero-order hold operation and has an effect on the fre-
quency response of the reconstructed signal.

The fact that DACs output a sequence of piecewise con-
stant values (known as zero-order hold in sample data
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textbooks) or rectangular pulses causes multiple harmon-
ics above the Nyquist frequency. Usually, these are re-
moved with a low pass filter acting as a reconstruction
filter in applications that require it.

11.3 Applications
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A simplified functional diagram of an 8-bit DAC

11.3.1 Audio

Most modern audio signals are stored in digital form (for
example MP3s and CDs) and in order to be heard through
speakers they must be converted into an analog signal.
DACs are therefore found in CD players, digital music
players, and PC sound cards.

Specialist standalone DACs can also be found in high-end
hi-fi systems. These normally take the digital output of a
compatible CD player or dedicated transport (which is
basically a CD player with no internal DAC) and convert
the signal into an analog line-level output that can then be
fed into an amplifier to drive speakers.

Similar digital-to-analog converters can be found in
digital speakers such as USB speakers, and in sound
cards.

In VoIP (Voice over IP) applications, the source must
first be digitized for transmission, so it undergoes conver-
sion via an analog-to-digital converter, and is then recon-
structed into analog using a DAC on the receiving party’s
end.

11.3.2 Video

Video sampling tends to work on a completely different
scale altogether thanks to the highly nonlinear response
both of cathode ray tubes (for which the vast major-
ity of digital video foundation work was targeted) and
the human eye, using a “gamma curve” to provide an
appearance of evenly distributed brightness steps across
the display’s full dynamic range - hence the need to use
RAMDACSs in computer video applications with deep
enough colour resolution to make engineering a hard-
coded value into the DAC for each output level of each
channel impractical (e.g. an Atari ST or Sega Genesis
would require 24 such values; a 24-bit video card would



11.4. DAC TYPES

Top-loading CD player and external digital-to-analog converter.

need 768...). Given this inherent distortion, it is not un-
usual for a television or video projector to truthfully claim
a linear contrast ratio (difference between darkest and
brightest output levels) of 1000:1 or greater, equivalent
to 10 bits of audio precision even though it may only ac-
cept signals with 8-bit precision and use an LCD panel
that only represents 6 or 7 bits per channel.

Video signals from a digital source, such as a computer,
must be converted to analog form if they are to be dis-
played on an analog monitor. As of 2007, analog inputs
were more commonly used than digital, but this changed
as flat panel displays with DVI and/or HDMI connections
became more widespread. A video DAC is, however, in-
corporated in any digital video player with analog out-
puts. The DAC is usually integrated with some memory
(RAM), which contains conversion tables for gamma cor-
rection, contrast and brightness, to make a device called
aRAMDAC.

A device that is distantly related to the DAC is the
digitally controlled potentiometer, used to control an ana-

log signal digitally.

11.3.3 Mechanical

An unusual application of digital-to-analog conversion
was the whiffletree electromechanical digital-to-analog
converter linkage in the IBM Selectric typewriter.

11.4 DAC types

The most common types of electronic DACs are:

o The pulse-width modulator, the simplest DAC type.
A stable current or voltage is switched into a low-
pass analog filter with a duration determined by the
digital input code. This technique is often used for
electric motor speed control, but has many other ap-
plications as well.
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e Oversampling DACs or interpolating DACs such as

the delta-sigma DAC, use a pulse density conver-
sion technique. The oversampling technique allows
for the use of a lower resolution DAC internally.
A simple 1-bit DAC is often chosen because the
oversampled result is inherently linear. The DAC
is driven with a pulse-density modulated signal, cre-
ated with the use of a low-pass filter, step nonlin-
earity (the actual 1-bit DAC), and negative feed-
back loop, in a technique called delta-sigma mod-
ulation. This results in an effective high-pass filter
acting on the quantization (signal processing) noise,
thus steering this noise out of the low frequencies
of interest into the megahertz frequencies of little
interest, which is called noise shaping. The quanti-
zation noise at these high frequencies is removed or
greatly attenuated by use of an analog low-pass filter
at the output (sometimes a simple RC low-pass cir-
cuit is sufficient). Most very high resolution DACs
(greater than 16 bits) are of this type due to its high
linearity and low cost. Higher oversampling rates
can relax the specifications of the output low-pass
filter and enable further suppression of quantization
noise. Speeds of greater than 100 thousand sam-
ples per second (for example, 192 kHz) and res-
olutions of 24 bits are attainable with delta-sigma
DACs. A short comparison with pulse-width mod-
ulation shows that a 1-bit DAC with a simple first-
order integrator would have to run at 3 THz (which
is physically unrealizable) to achieve 24 meaningful
bits of resolution, requiring a higher-order low-pass
filter in the noise-shaping loop. A single integrator is
a low-pass filter with a frequency response inversely
proportional to frequency and using one such inte-
grator in the noise-shaping loop is a first order delta-
sigma modulator. Multiple higher order topologies
(such as MASH) are used to achieve higher degrees
of noise-shaping with a stable topology.

The binary-weighted DAC, which contains individ-
ual electrical components for each bit of the DAC
connected to a summing point. These precise volt-
ages or currents sum to the correct output value.
This is one of the fastest conversion methods but suf-
fers from poor accuracy because of the high preci-
sion required for each individual voltage or current.
Such high-precision components are expensive, so
this type of converter is usually limited to 8-bit res-
olution or less.

e Switched resistor DAC contains a parallel re-
sistor network. Individual resistors are en-
abled or bypassed in the network based on the
digital input.

e Switched current source DAC, from which
different current sources are selected based on
the digital input.

e Switched capacitor DAC contains a paral-
lel capacitor network. Individual capacitors



are connected or disconnected with switches
based on the input.

e The R-2R ladder DAC which is a binary-weighted
DAC that uses a repeating cascaded structure of re-
sistor values R and 2R. This improves the precision
due to the relative ease of producing equal valued-
matched resistors (or current sources).

e The Successive-Approximation or Cyclic DAC,
which successively constructs the output during each
cycle. Individual bits of the digital input are pro-
cessed each cycle until the entire input is accounted
for.

e The thermometer-coded DAC, which contains an
equal resistor or current-source segment for each
possible value of DAC output. An 8-bit thermome-
ter DAC would have 255 segments, and a 16-bit
thermometer DAC would have 65,535 segments.
This is perhaps the fastest and highest precision
DAC architecture but at the expense of high cost.
Conversion speeds of >1 billion samples per second
have been reached with this type of DAC.

e Hybrid DACs, which use a combination of the
above techniques in a single converter. Most DAC
integrated circuits are of this type due to the diffi-
culty of getting low cost, high speed and high preci-
sion in one device.

e The segmented DAC, which combines the
thermometer-coded principle for the most sig-
nificant bits and the binary-weighted princi-
ple for the least significant bits. In this way, a
compromise is obtained between precision (by
the use of the thermometer-coded principle)
and number of resistors or current sources (by
the use of the binary-weighted principle). The
full binary-weighted design means 0% seg-
mentation, the full thermometer-coded design
means 100% segmentation.

e Most DACs, shown earlier in this list, rely on a con-
stant reference voltage to create their output value.
Alternatively, a multiplying DAC' takes a variable
input voltage for their conversion. This puts addi-
tional design constraints on the bandwidth of the
conversion circuit.

11.5 DAC performance

DACs are very important to system performance. The
most important characteristics of these devices are:

Resolution The number of possible output levels the
DAC is designed to reproduce. This is usually stated
as the number of bits it uses, which is the base two
logarithm of the number of levels. For instance a 1
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bit DAC is designed to reproduce 2 (21) levels while
an 8 bit DAC is designed for 256 (2%) levels. Resolu-
tion is related to the effective number of bits which
is a measurement of the actual resolution attained
by the DAC. Resolution determines color depth in
video applications and audio bit depth in audio ap-
plications.

Maximum sampling rate A measurement of the max-
imum speed at which the DACs circuitry can oper-
ate and still produce the correct output. As stated
above, the Nyquist—Shannon sampling theorem de-
fines a relationship between this and the bandwidth
of the sampled signal.

Monotonicity The ability of a DAC’s analog output to
move only in the direction that the digital input
moves (i.e., if the input increases, the output doesn't
dip before asserting the correct output.) This char-
acteristic is very important for DACs used as a
low frequency signal source or as a digitally pro-
grammable trim element.

Total harmonic distortion and noise (THD+N) A
measurement of the distortion and noise introduced
to the signal by the DAC. It is expressed as a per-
centage of the total power of unwanted harmonic
distortion and noise that accompany the desired
signal. This is a very important DAC characteristic
for dynamic and small signal DAC applications.

Dynamic range A measurement of the difference be-
tween the largest and smallest signals the DAC can
reproduce expressed in decibels. This is usually re-
lated to resolution and noise floor.

Other measurements, such as phase distortion and jitter,
can also be very important for some applications, some of
which (e.g. wireless data transmission, composite video)
may even rely on accurate production of phase-adjusted

signals.
Linear PCM audio sampling usually works on the basis

of each bit of resolution being equivalent to 6 decibels of
amplitude (a 2x increase in volume or precision).

Non-linear PCM encodings (A-law / p-law, ADPCM,
NICAM) attempt to improve their effective dynamic
ranges by a variety of methods - logarithmic step sizes
between the output signal strengths represented by each
data bit (trading greater quantisation distortion of loud
signals for better performance of quiet signals)

11.6 DAC figures of merit

e Static performance:

e Differential nonlinearity (DNL) shows how
much two adjacent code analog values deviate
from the ideal 1 LSB step.[?)
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Integral nonlinearity (INL) shows how much
the DAC transfer characteristic deviates from
an ideal one. That is, the ideal characteristic
is usually a straight line; INL shows how much
the actual voltage at a given code value differs
from that line, in LSBs (1 LSB steps).

Gain
Offset

Noise is ultimately limited by the thermal
noise generated by passive components such as
resistors. For audio applications and in room
temperatures, such noise is usually a little less
than 1 uV (microvolt) of white noise. This
limits performance to less than 20~21 bits even
in 24-bit DACs.

e Frequency domain performance

Spurious-free dynamic range (SFDR) indi-
cates in dB the ratio between the powers of
the converted main signal and the greatest un-
desired spur.

Signal-to-noise and distortion ratio (SNDR)
indicates in dB the ratio between the powers
of the converted main signal and the sum of
the noise and the generated harmonic spurs

i-th harmonic distortion (HD1i) indicates the
power of the i-th harmonic of the converted
main signal

Total harmonic distortion (THD) is the sum of
the powers of all HDi

If the maximum DNL error is less than 1 LSB,
then the D/A converter is guaranteed to be
monotonic. However, many monotonic con-
verters may have a maximum DNL greater
than 1 LSB.

e Time domain performance:

Glitch impulse area (glitch energy)
Response uncertainty

Time nonlinearity (TNL)

11.7 See also

o Integral linearity

e I’S

e Modem

e RAMDAC
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Chapter 12

Power management

For Management of energy in various contexts, see
Energy management.

Power Management is a feature of some electrical ap-
pliances, especially copiers, computers, GPUs and com-
puter peripherals such as monitors and printers, that turns
off the power or switches the system to a low-power state
when inactive. In computing this is known as PC power
management and is built around a standard called ACPL
This supersedes APM. All recent (consumer) computers
have ACPI support.

In the military, ""Power Management"" often refers to
suites of equipment which permit soldiers and squads to
share diverse energy sources, powering often incompati-
ble equipment.!!]

12.1 Motivations

PC power management for computer systems is desired
for many reasons, particularly:

e Reduce overall energy consumption

Prolong battery life for portable and embedded sys-
tems

Reduce cooling requirements

Reduce noise

Reduce operating costs for energy and cooling

Lower power consumption also means lower heat dissi-
pation, which increases system stability, and less energy
use, which saves money and reduces the impact on the
environment.

12.2 Processor level techniques

The power management for microprocessors can be done
over the whole processor,/? or in specific components,
such as cache memory®™! and main memory.™

With dynamic voltage scaling and dynamic frequency
scaling, the CPU core voltage, clock rate, or both, can
be altered to decrease power consumption at the price of
potentially lower performance. This is sometimes done
in real time to optimize the power-performance tradeoff.

Examples:

e AMD Cool'n'Quiet
AMD PowerNow! B

IBM EnergyScale ©!

Intel SpeedStep

Transmeta LongRun and LongRun2
e VIA LongHaul (PowerSaver)

Additionally, processors can selectively power off internal
circuitry (power gating). For example:

e Newer Intel Core processors support ultra-fine
power control over the functional units within the
Processors.

o AMD CoolCore technology get more efficient per-
formance by dynamically activating or turning off
parts of the processor.”!

Intel VRT technology split the chip into a 3.3V I/O sec-
tion and a 2.9V core section. The lower core voltage re-
duces power consumption.

12.2.1 Heterogenous computing

ARM's big.LITTLE architecture can migrate processes
between faster “big” cores and more power efficient “LIT-
TLE” cores.

-
-

12.3 Operating system level: Hi-

bernation

Main article: Hibernation (computing)
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When a computer system hibernates it saves the contents
of the RAM to disk and powers down the machine. On
startup it reloads the data. This allows the system to be
completely powered off while in hibernate mode. This
requires a file the size of the installed RAM to be placed
on the hard disk, potentially using up space even when not
in hibernate mode. Hibernate mode is enabled by default
in some versions of Windows and canbe disabled in order
to recover this disk space.

124 Power Management in GPUs

Graphics processing unit (GPUs) are used together
with a CPU to accelerate computing in variety of do-
mains revolving around scientific, analytics, engineering,
consumer and enterprise applications.® All of this do
come with some drawbacks, the high computing capa-
bility of GPUs comes at the cost of high power dissipa-
tion. A lot of research has been done over the power dis-
sipation issue of GPUs and a lot of different techniques
have been proposed to address this issue. Dynamic volt-
age scaling/Dynamic frequency scaling(DVFS) and clock
gating are two commonly used techniques for reducing
dynamic power in GPUs.

12.4.1 DVFS Techniques

Experiments show that conventional processor DVFS
policy can achieve power reduction of embedded GPUs
with reasonable performance degradation.”! New direc-
tions for designing effective DVFS schedulers for hetero-
geneous systems are also being explored./'’! A hetero-
geneous CPU-GPU architecture, GreenGPU!! is pre-
sented which employs DVFS in a synchronized way, both
for GPU and CPU. GreenGPU is implemented using the
CUDA framework on a real physical testbed with Nvidia
GeForce GPUs and AMD Phenom II CPUs. Experi-
mentally it is shown that the GreenGPU achieves 21.04%
average energy saving and outperforms several well-
designed baselines. For the mainstream GPUs which are
extensively used in all kinds of commercial and personal
applications several DVFS techniques exist and are built
into the GPUs alone, AMD PowerTune and AMD Zero-
Core Power are the two dynamic frequency scaling tech-
nologies for AMD graphic cards. Practical tests showed
that reclocking a Geforce GTX 480 can achieve a 28%
lower power consumption while only decreasing perfor-
mance by 1% for a given task.[?!

12.4.2 Power Gating Techniques

A lot of research has been done on the dynamic power
reduction with the use of DVFS techniques. However,
as technology continues to shrink, leakage power will
become a dominant factor."3! Power gating is a com-
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monly used circuit technique to remove leakage by turn-
ing off the supply voltage of unused circuits. Power gat-
ing incurs energy overhead; therefore, unused circuits
need to remain idle long enough to compensate this over-
heads. A novel micro-architectural technique!**! for run-
time power-gating caches of GPUs saves leakage en-
ergy. Based on experiments on 16 different GPU work-
loads, the average energy savings achieved by the pro-
posed technique is 54%. Shaders are the most power hun-
gry component of a GPU, a predictive shader shut down
power gating technique!™! achieves up to 46% leakage
reduction on shader processors. The Predictive Shader
Shutdown technique exploits workload variation across
frames to eliminate leakage in shader clusters. Another
technique called Deferred Geometry Pipeline seeks to
minimize leakage in fixed-function geometry units by
utilizing an imbalance between geometry and fragment
computation across batches which removes up to 57%
of the leakage in the fixed-function geometry units. A
simple time-out power gating method can be applied to
non-shader execution units which eliminates 83.3% of
the leakage in non-shader execution units on average. All
the three techniques stated above incur negligible perfor-
mance degradation, less than 1%.1%!

12.5 See also

e CPU power dissipation

e Low-power electronics

e Dynamic voltage scaling

e Dynamic frequency scaling

e Advanced power management (APM)

e Advanced Configuration and Power Interface
(ACPD

e Hibernate
e Sleep

e BatteryMAX (idle detection)
e 30 Plus

e Energy Star

e Green computing

e pmset

e PowerTOP - diagnostic tool
e The Green Grid

e Sleep Proxy Service

e Standby power

e Thermal Design Power



e VESA Display Power Management Signaling
(DPMS)

e Run-time estimation of system and sub-system level
power consumption
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Chapter 13

Bus (computing)

4 PCI Express bus card slots ( from top to bottom: x4, x16, x1 and
x16), compared to a 32-bit conventional PCI bus card slot (very
bottom)

In computer architecture, a bus (related to the Latin
"omnibus", meaning “for all”) is a communication sys-
tem that transfers data between components inside a
computer, or between computers. This expression covers
all related hardware components (wire, optical fiber, etc.)
and software, including communication protocols.!!

Early computer buses were parallel electrical wires with
multiple connections, but the term is now used for any
physical arrangement that provides the same logical func-
tionality as a parallel electrical bus. Modern computer
buses can use both parallel and bit serial connections, and
can be wired in either a multidrop (electrical parallel) or
daisy chain topology, or connected by switched hubs, as
in the case of USB.

13.1 Background and nomencla-
ture

Computer systems generally consist of three main parts:
the central processing unit (CPU) that processes data,
memory that holds the programs and data to be pro-
cessed, and I/O (input/output) devices as peripherals that
communicate with the outside world. An early com-
puter might use a hand-wired CPU of vacuum tubes, a
magnetic drum for main memory, and a punch tape and
printer for reading and writing data. In a modern sys-
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tem we might find a multi-core CPU, DDR3 SDRAM for
memory, a hard drive for secondary storage, a graphics
card and LCD display as a display system, a mouse and
keyboard for interaction, and a Wi-Fi connection for
networking. In both examples, computer buses of one
form or another move data between all of these devices.

In most traditional computer architectures, the CPU
and main memory tend to be tightly coupled. A
microprocessor conventionally is a single chip which has
a number of electrical connections on its pins that can be
used to select an “address” in the main memory and an-
other set of pins to read and write the data stored at that
location. In most cases, the CPU and memory share sig-
nalling characteristics and operate in synchrony. The bus
connecting the CPU and memory is one of the defining
characteristics of the system, and often referred to simply
as the system bus.

It is possible to allow peripherals to communicate with
memory in the same fashion, attaching adaptors in the
form of expansion cards directly to the system bus. This
is commonly accomplished through some sort of stan-
dardized electrical connector, several of these forming
the expansion bus or local bus. However, as the per-
formance differences between the CPU and peripherals
varies widely, some solution is generally needed to en-
sure that peripherals do not slow overall system perfor-
mance. Many CPUs feature a second set of pins simi-
lar to those for communicating with memory, but able
to operate at very different speeds and using different
protocols. Others use smart controllers to place the data
directly in memory, a concept known as direct memory
access. Most modern systems combine both solutions,
where appropriate.

As the number of potential peripherals grew, using an
expansion card for every peripheral became increasingly
untenable. This has led to the introduction of bus sys-
tems designed specifically to support multiple peripher-
als. Common examples are the SATA ports in mod-
ern computers, which allow a number of hard drives to
be connected without the need for a card. However,
these high-performance systems are generally too expen-
sive to implement in low-end devices, like a mouse. This
has led to the parallel development of a number of low-
performance bus systems for these solutions, the most
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common example being Universal Serial Bus. All such
examples may be referred to as peripheral buses, although
this terminology is not universal.

In modern systems the performance difference between
the CPU and main memory has grown so great that in-
creasing amounts of high-speed memory is built directly
into the CPU, known as a cache. In such systems, CPUs
communicate using high-performance buses that operate
at speeds much greater than memory, and communicate
with memory using protocols similar to those used solely
for peripherals in the past. These system buses are also
used to communicate with most (or all) other peripher-
als, through adaptors, which in turn talk to other periph-
erals and controllers. Such systems are architecturally
more similar to multicomputers, communicating over a
bus rather than a network. In these cases, expansion buses
are entirely separate and no longer share any architecture
with their host CPU (and may in fact support many dif-
ferent CPUs, as is the case with PCI). What would have
formerly been a system bus is now often known as a front-
side bus.

Given these changes, the classical terms “system”, “ex-
pansion” and “peripheral” no longer have the same conno-
tations. Other common categorization systems are based
on the buses primary role, connecting devices internally
or externally, PCI vs. SCSI for instance. However, many
common modern bus systems can be used for both; SATA
and the associated eSATA are one example of a system
that would formerly be described as internal, while in
certain automotive applications use the primarily exter-
nal IEEE 1394 in a fashion more similar to a system bus.
Other examples, like InfiniBand and PC were designed
from the start to be used both internally and externally.

13.1.1 Internal bus

The internal bus, also known as internal data bus, memory
bus, system bus or Front-Side-Bus, connects all the inter-
nal components of a computer, such as CPU and mem-
ory, to the motherboard. Internal data buses are also re-
ferred to as a local bus, because they are intended to con-
nect to local devices. This bus is typically rather quick
and is independent of the rest of the computer operations.

13.1.2 External bus

The external bus, or expansion bus, is made up of the
electronic pathways that connect the different external
devices, such as printer etc., to the computer.

13.2 Implementation details

Buses can be parallel buses, which carry data words in
parallel on multiple wires, or serial buses, which carry
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data in bit-serial form. The addition of extra power and
control connections, differential drivers, and data con-
nections in each direction usually means that most serial
buses have more conductors than the minimum of one
used in 1-Wire and UNI/O. As data rates increase, the
problems of timing skew, power consumption, electro-
magnetic interference and crosstalk across parallel buses
become more and more difficult to circumvent. One par-
tial solution to this problem has been to double pump the
bus. Often, a serial bus can be operated at higher overall
data rates than a parallel bus, despite having fewer elec-
trical connections, because a serial bus inherently has no
timing skew or crosstalk. USB, FireWire, and Serial ATA
are examples of this. Multidrop connections do not work
well for fast serial buses, so most modern serial buses use
daisy-chain or hub designs.

Network connections such as Ethernet are not generally
regarded as buses, although the difference is largely con-
ceptual rather than practical. An attribute generally used
to characterize a bus is that power is provided by the bus
for the connected hardware. This emphasizes the busbar
origins of bus architecture as supplying switched or dis-
tributed power. This excludes, as buses, schemes such
as serial RS-232, parallel Centronics, IEEE 1284 inter-
faces and Ethernet, since these devices also needed sepa-
rate power supplies. Universal Serial Bus devices may use
the bus supplied power, but often use a separate power
source. This distinction is exemplified by a telephone sys-
tem with a connected modem, where the RJ11 connec-
tion and associated modulated signalling scheme is not
considered a bus, and is analogous to an Ethernet con-
nection. A phone line connection scheme is not consid-
ered to be a bus with respect to signals, but the Central
Office uses buses with cross-bar switches for connections
between phones.

However, this distinction—that power is provided by the
bus—is not the case in many avionic systems, where data
connections such as ARINC 429, ARINC 629, MIL-
STD-1553B (STANAG 3838), and EFABus (STANAG
3910) are commonly referred to as “data buses” or, some-
times, “databuses”. Such avionic data buses are usually
characterized by having several equipments or Line Re-
placeable Items/Units (LRI/LRUs) connected to a com-
mon, shared media. They may, as with ARINC 429, be
simplex, i.e. have a single source LRI/LRU or, as with
ARINC 629, MIL-STD-1553B, and STANAG 3910, be
duplex, allow all the connected LRI/LRUs to act, at dif-
ferent times (half duplex), as transmitters and receivers
of data.?!

13.3 History

Over time, several groups of people worked on vari-
ous computer bus standards, including the IEEE Bus
Architecture Standards Committee (BASC), the IEEE
“Superbus” study group, the open microprocessor initia-
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tive (OMI), the open microsystems initiative (OMI), the
“Gang of Nine” that developed EISA, etc.

13.3.1 First generation

Early computer buses were bundles of wire that at-
tached computer memory and peripherals. Anecdotally
termed the "digit trunk",”’) they were named after elec-
trical power buses, or busbars. Almost always, there was
one bus for memory, and one or more separate buses for
peripherals. These were accessed by separate instruc-
tions, with completely different timings and protocols.

One of the first complications was the use of interrupts.
Early computer programs performed I/O by waiting in a
loop for the peripheral to become ready. This was a waste
of time for programs that had other tasks to do. Also,
if the program attempted to perform those other tasks,
it might take too long for the program to check again,
resulting in loss of data. Engineers thus arranged for the
peripherals to interrupt the CPU. The interrupts had to
be prioritized, because the CPU can only execute code
for one peripheral at a time, and some devices are more
time-critical than others.

High-end systems introduced the idea of channel con-
trollers, which were essentially small computers dedi-
cated to handling the input and output of a given bus.
IBM introduced these on the IBM 709 in 1958, and they
became a common feature of their platforms. Other high-
performance vendors like Control Data Corporation im-
plemented similar designs. Generally, the channel con-
trollers would do their best to run all of the bus operations
internally, moving data when the CPU was known to be
busy elsewhere if possible, and only using interrupts when
necessary. This greatly reduced CPU load, and provided
better overall system performance.
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To provide modularity, memory and I/O buses can be
combined into a unified system bus.¥ In this case, a sin-
gle mechanical and electrical system can be used to con-
nect together many of the system components, or in some
cases, all of them.
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Later computer programs began to share memory com-
mon to several CPUs. Access to this memory bus had to
be prioritized, as well. The simple way to prioritize in-
terrupts or bus access was with a daisy chain. In this case
signals will naturally flow through the bus in physical or
logical order, eliminating the need for complex schedul-
ing.

13.3.2 Minis and micros

Digital Equipment Corporation (DEC) further reduced
cost for mass-produced minicomputers, and mapped pe-
ripherals into the memory bus, so that the input and
output devices appeared to be memory locations. This
was implemented in the Unibus of the PDP-11 around
1969.51

Early microcomputer bus systems were essentially a pas-
sive backplane connected directly or through buffer am-
plifiers to the pins of the CPU. Memory and other devices
would be added to the bus using the same address and data
pins as the CPU itself used, connected in parallel. Com-
munication was controlled by the CPU, which had read
and written data from the devices as if they are blocks
of memory, using the same instructions, all timed by a
central clock controlling the speed of the CPU. Still, de-
vices interrupted the CPU by signaling on separate CPU
pins. For instance, a disk drive controller would signal the
CPU that new data was ready to be read, at which point
the CPU would move the data by reading the “memory
location” that corresponded to the disk drive. Almost all
early microcomputers were built in this fashion, starting
with the S-100 bus in the Altair 8800 computer system.

In some instances, most notably in the IBM PC, although
similar physical architecture can be employed, instruc-
tions to access peripherals (in and out) and memory (mov
and others) have not been made uniform at all, and still
generate distinct CPU signals, that could be used to im-
plement a separate I/O bus.

These simple bus systems had a serious drawback when
used for general-purpose computers. All the equipment
on the bus had to talk at the same speed, as it shared a
single clock.

Increasing the speed of the CPU becomes harder, be-
cause the speed of all the devices must increase as well.
When it i8 not practical or economical to have all de-
vices as fast as the CPU, the CPU must either enter a wait
state, or work at a slower clock frequency temporarily,®!
to talk to other devices in the computer. While accept-
able in embedded systems, this problem was not tolerated
for long in general-purpose, user-expandable computers.

Such bus systems are also difficult to configure when con-
structed from common off-the-shelf equipment. Typi-
cally each added expansion card requires many jumpers
in order to set memory addresses, I/O addresses, interrupt
priorities, and interrupt numbers.
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13.3.3 Second generation

“Second generation” bus systems like NuBus addressed
some of these problems. They typically separated the
computer into two “worlds”, the CPU and memory on
one side, and the various devices on the other. A bus
controller accepted data from the CPU side to be moved
to the peripherals side, thus shifting the communications
protocol burden from the CPU itself. This allowed the
CPU and memory side to evolve separately from the de-
vice bus, or just “bus”. Devices on the bus could talk to
each other with no CPU intervention. This led to much
better “real world” performance, but also required the
cards to be much more complex. These buses also often
addressed speed issues by being “bigger” in terms of the
size of the data path, moving from 8-bit parallel buses
in the first generation, to 16 or 32-bit in the second, as
well as adding software setup (now standardised as Plug-
n-play) to supplant or replace the jumpers.

However these newer systems shared one quality with
their earlier cousins, in that everyone on the bus had to
talk at the same speed. While the CPU was now isolated
and could increase speed, CPUs and memory continued
to increase in speed much faster than the buses they talked
to. The result was that the bus speeds were now very
much slower than what a modern system needed, and the
machines were left starved for data. A particularly com-
mon example of this problem was that video cards quickly
outran even the newer bus systems like PCI, and comput-
ers began to include AGP just to drive the video card. By
2004 AGP was outgrown again by high-end video cards
and other peripherals and has been replaced by the new
PCI Express bus.

An increasing number of external devices started employ-
ing their own bus systems as well. When disk drives were
first introduced, they would be added to the machine with
a card plugged into the bus, which is why computers have
so many slots on the bus. But through the 1980s and
1990s, new systems like SCSI and IDE were introduced
to serve this need, leaving most slots in modern systems
empty. Today there are likely to be about five different
buses in the typical machine, supporting various devices.

13.3.4 Third generation

See also: Bus network

“Third generation” buses have been emerging into the
market since about 2001, including HyperTransport and
InfiniBand. They also tend to be very flexible in terms
of their physical connections, allowing them to be used
both as internal buses, as well as connecting different ma-
chines together. This can lead to complex problems when
trying to service different requests, so much of the work
on these systems concerns software design, as opposed
to the hardware itself. In general, these third generation

CHAPTER 13. BUS (COMPUTING)

buses tend to look more like a network than the original
concept of a bus, with a higher protocol overhead needed
than early systems, while also allowing multiple devices
to use the bus at once.

Buses such as Wishbone have been developed by the open
source hardware movement in an attempt to further re-
move legal and patent constraints from computer design.

13.4 Examples of internal com-
puter buses

13.4.1 Parallel

e ASUS Media Bus proprietary, used on some ASUS
Socket 7 motherboards

e Computer Automated Measurement and Control
(CAMAC) for instrumentation systems

e Extended ISA or EISA

e Industry Standard Architecture or ISA
e Low Pin Count or LPC

e MBus

e MicroChannel or MCA

e Multibus for industrial systems

e NuBus or IEEE 1196

e OPTi local bus used on early Intel 80486 mother-
boards.

e Conventional PCI

o Parallel ATA (also known as Advanced Technology
Attachment, ATA, PATA, IDE, EIDE, ATAPI, etc.)
disk/tape peripheral attachment bus

e S5-100 bus or IEEE 696, used in the Altair and sim-
ilar microcomputers

e SBus or IEEE 1496
e SS-50 Bus

e Runway bus, a proprietary front side CPU bus de-
veloped by Hewlett-Packard for use by its PA-RISC
microprocessor family

e GSC/HSC, a proprietary peripheral bus developed
by Hewlett-Packard for use by its PA-RISC micro-
processor family

e Precision Bus, a proprietary bus developed by
Hewlett-Packard for use by its HP3000 computer
family

e STEbus



STD Bus (for STD-80 [8-bit] and STD32 [16-/32-
bit]), FAQ

Unibus, a proprietary bus developed by Digital
Equipment Corporation for their PDP-11 and early
VAX computers.

Q-Bus, a proprietary bus developed by Digital
Equipment Corporation for their PDP and later
VAX computers.

VESA Local Bus or VLB or VL-bus
VMEDbus, the VERSAmodule Eurocard bus
PC/104

PC/104 Plus

PC/104 Express

PCI-104

PCIe-104

Zorro II and Zorro III, used in Amiga computer sys-
tems

13.4.2 Serial

1-Wire

HyperTransport

IC

PCI Express or PCle

Serial ATA (SATA)

Serial Peripheral Interface Bus or SPI bus
UNI/O

SMBus

13.5 Examples of external com-

puter buses

13.5.1 Parallel

o HIPPI HiIgh Performance Parallel Interface

o IEEE-488 (also known as GPIB, General-Purpose

Interface Bus, and HPIB, Hewlett-Packard Instru-
mentation Bus)

e PC Card, previously known as PCMCIA, much used

in laptop computers and other portables, but fading
with the introduction of USB and built-in network
and modem connections
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13.5.2 Serial

Controller area network (“CAN bus™)
eSATA

ExpressCard

Fieldbus

IEEE 1394 interface (FireWire)
Lightning

RS-232

RS-485

Thunderbolt (interface)

USB Universal Serial Bus, used for a variety of ex-
ternal devices

13.6 Examples of internal/external

computer buses

Futurebus

InfiniBand

PCI Express External Cabling
QuickRing

Scalable Coherent Interface (SCI)

SCSI Small Computer System Interface, disk/tape
peripheral attachment bus

Serial Attached SCSI (SAS) and other serial SCSI
buses

Thunderbolt

Yapbus, a proprietary bus developed for the Pixar
Image Computer

13.7 See also

Address bus

Bus contention

Control bus

Data bus

Front-side bus (FSB)
External Bus Interface (EBI)
Harvard architecture

Network On Chip



70 CHAPTER 13. BUS (COMPUTING)

e List of device bandwidths
e List of network buses

e Software bus
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e Computer hardware buses at DMOZ
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Advanced Microcontroller Bus

Architecture

The ARM Advanced Microcontroller Bus Architec-
ture (AMBA) is an open-standard, on-chip interconnect
specification for the connection and management of func-
tional blocks in system-on-a-chip (SoC) designs. It facil-
itates development of multi-processor designs with large
numbers of controllers and peripherals. Since its incep-
tion, the scope of AMBA has, despite its name, gone
far beyond micro controller devices. Today, AMBA is
widely used on a range of ASIC and SoC parts including
applications processors used in modern portable mobile
devices like smartphones. AMBA is a registered trade-
mark of ARM Ltd.[!]

AMBA was introduced by ARM in 1996. The first
AMBA buses were Advanced System Bus (ASB) and
Advanced Peripheral Bus (APB). In its second version,
AMBA 2, ARM added AMBA High-performance Bus
(AHB) that is a single clock-edge protocol. In 2003,
ARM introduced the third generation, AMBA 3, includ-
ing AXI to reach even higher performance interconnect
and the Advanced Trace Bus (ATB) as part of the Core-
Sight on-chip debug and trace solution. In 2010 the
AMBA 4 specifications were introduced starting with
AMBA 4 AXI4, then in 201112] extending system wide
coherency with AMBA 4 ACE. In 2013 the AMBA
5 CHI (Coherent Hub Interface) specification was intro-
duced, with a re-designed high-speed transport layer and
features designed to reduce congestion.

These protocols are today the de facto standard for 32-bit
embedded processors because they are well documented
and can be used without royalties.

14.1 Design principles

An important aspect of a SoC is not only which compo-
nents or blocks it houses, but also how they interconnect.
AMBA 1is a solution for the blocks to interface with each
other.

The objective of the AMBA specification is to:

o facilitate right-first-time development of embedded
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microcontroller products with one or more CPUs,
GPUs or signal processors,

be technology independent, to allow reuse of IP
cores, peripheral and system macrocells across di-
verse IC processes,

encourage modular system design to improve pro-
cessor independence, and the development of
reusable peripheral and system IP libraries

minimize silicon infrastructure while supporting
high performance and low power on-chip commu-
nication.

14.2 AMBA protocol specifications

The AMBA specification defines an on-chip communica-
tions standard for designing high-performance embedded
microcontrollers. It is supported by ARM Limited with
wide cross-industry participation.

The AMBA 5 specification defines following
buses/interfaces:

e CHI Coherent Hub Interface (CHI) I*!

The AMBA 4 specification defines following
buses/interfaces:

e AXI Coherency Extensions (ACE) - widely used
on the latest ARM Cortex-A processors including
Cortex-A7 and Cortex-AlS5

AXI Coherency Extensions Lite (ACE-Lite)
Advanced Extensible Interface 4 (AXI4)
Advanced Extensible Interface 4 Lite (AXI4-Lite)

Advanced Extensible Interface 4 Stream (AXI4-
Stream v1.0)

Advanced Trace Bus (ATB v1.1)
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e Advanced Peripheral Bus (APB4 v2.0)
AMBA 3 specification defines four buses/interfaces:

e Advanced Extensible Interface (AXI3 or AXI v1.0)
- widely used on ARM Cortex-A processors includ-
ing Cortex-A9

e Advanced High-performance Bus Lite (AHB-Lite
v1.0)

e Advanced Peripheral Bus (APB3 v1.0)
e Advanced Trace Bus (ATB v1.0)

AMBA 2 specification defines three buses/interfaces:

e Advanced High-performance Bus (AHB) - widely
used on ARM7, ARM9 and ARM Cortex-M based
designs

e Advanced System Bus (ASB)
e Advanced Peripheral Bus (APB2 or APB)

AMBA specification (First
buses/interfaces:

version) defines two

e Advanced System Bus (ASB)

e Advanced Peripheral Bus (APB)

The timing aspects and the voltage levels on the bus are
not dictated by the specifications.

14.2.1 AXI Coherency Extensions (ACE
and ACE-Lite)

ACE, defined as part of the AMBA 4 specification, ex-
tends AXI with additional signalling introducing system
wide coherency.! This system coherency allows multi-
ple processors to share memory and enables technology
like ARM’s big. LITTLE processing. The ACE-Lite pro-
tocol enables one-way aka IO coherency, for example a
network interface that can read from the caches of a fully
coherent ACE processor.

14.2.2 Advanced
(AXI)

eXtensible Interface

AXI, the third generation of AMBA interface defined
in the AMBA 3 specification, is targeted at high per-
formance, high clock frequency system designs and in-
cludes features that make it suitable for high speed sub-
micrometer interconnect:

e separate address/control and data phases

e support for unaligned data transfers using byte
strobes

e burst based transactions with only start address is-
sued

¢ issuing of multiple outstanding addresses with out of
order responses

o casy addition of register stages to provide timing clo-
sure.

14.2.3 Advanced High-performance Bus
(AHB)

AHB is a bus protocol introduced in Advanced Micro-
controller Bus Architecture version 2 published by ARM
Ltd company.

In addition to previous release, it has the following fea-
tures:

e large bus-widths (64/128 bit).

A simple transaction on the AHB consists of an address
phase and a subsequent data phase (without wait states:
only two bus-cycles). Access to the target device is con-
trolled through a MUX (non-tristate), thereby admitting
bus-access to one bus-master at a time.

AHB-Lite is a subset of AHB formally defined in the
AMBA 3 standard. This subset simplifies the design for
a bus with a single master.

14.2.4 Advanced Peripheral Bus (APB)

APB is designed for low bandwidth control accesses, for
example register interfaces on system peripherals. This
bus has an address and data phase similar to AHB, but a
much reduced, low complexity signal list (for example no
bursts).

14.3 AMBA products

A family of synthesizable intellectual property (IP) cores
AMBA Products licensable from ARM Limited that im-
plement a digital highway in a SoC for the efficient mov-
ing and storing of data using the AMBA protocol spec-
ifications. The AMBA family includes AMBA Network
Interconnect (CoreLink NIC-400), Cache Coherent In-
terconnect (CoreLink CCI-500) SDRAM memory con-
trollers (CoreLink DMC-400), DMA controllers (Core-
Link DMA-230, DMA-330), level 2 cache controllers
(L2C-310), etc.

A number of manufacturers utilize AMBA buses for non-
ARM designs. As an example Infineon uses an AMBA
bus for the ADMS5120 SoC based on the MIPS architec-
ture.
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EXTERNAL LINKS

144 Competitors

OpenCores Wishbone bus — Free and open bus ar-
chitecture (formerly from Silicore)

IBM CoreConnect bus technology, used in IBM’s
embedded Power Architecture products, but also
in many other SoC-like systems with the Xilinx
MicroBlaze or similar cores

IDT IPBus

Altera Avalon — proprietary bus system for Altera’s
Nios IT SoCs B!

OCP Open Core Protocol

Hyper Transport from AMD (though this is an off-
chip interface, not on chip bus)

Quick Path from Intel (though this is an off-chip in-
terface, not on chip bus)

14.5 See also

Functional specification
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Direct memory access

SDI1 InputfOutput card
SDI out

SDlin

PCle bus

Peer-lo-peer translers ([AMD DirectGMA|

System memory

CPU

AMD DirectGMA is a form of DMA. It enables low-latency peer-
to-peer data transfers between devices on the PCle bus and AMD
FirePro-branded products. SDI devices supporting DirectGMA
can write directly into the graphics memory of the GPU and vice
versa the GPU can directly access the memory of a peer device.

Direct memory access (DMA) is a feature of computer
systems that allows certain hardware subsystems to ac-
cess main system memory (RAM) independently of the
central processing unit (CPU).

Without DMA, when the CPU is using programmed in-
put/output, it is typically fully occupied for the entire
duration of the read or write operation, and is thus un-
available to perform other work. With DMA, the CPU
first initiates the transfer, then it does other operations
while the transfer is in progress, and it finally receives
an interrupt from the DMA controller when the opera-
tion is done. This feature is useful at any time that the
CPU cannot keep up with the rate of data transfer, or
when the CPU needs to perform useful work while wait-
ing for a relatively slow I/O data transfer. Many hard-
ware systems use DMA, including disk drive controllers,
graphics cards, network cards and sound cards. DMA
is also used for intra-chip data transfer in multi-core pro-
cessors. Computers thathave DMA channels can transfer
data to and from devices with much less CPU overhead
than computers without DMA channels. Similarly, a pro-
cessing element inside a multi-core processor can transfer
data to and from its local memory without occupying its
processor time, allowing computation and data transfer to
proceed in parallel.

DMA can also be used for “memory to memory” copy-
ing or moving of data within memory. DMA can of-

fload expensive memory operations, such as large copies
or scatter-gather operations, from the CPU to a dedicated
DMA engine. Animplementation example is the /O Ac-
celeration Technology.

15.1 Principle

A DMA controller can generate memory addresses and
initiate memory read or write cycles. It contains several
processor registers that can be written and read by the
CPU. These include a memory address register, a byte
count register, and one or more control registers. The
control registers specify the I/O port to use, the direction
of the transfer (reading from the I/O device or writing
to the I/O device), the transfer unit (byte at a time or
word at a time), and the number of bytes to transfer in
one burst.["]

To carry out an input, output or memory-to-memory op-
eration, the host processor initializes the DMA controller
with a count of the number of words to transfer, and the
memory address to use. The CPU then sends commands
to a peripheral device to initiate transfer of data. The
DMA controller then provides addresses and read/write
control lines to the system memory. Each time a byte of
data is ready to be transferred between the peripheral de-
vice and memory, the DMA controller increments its in-
ternal address register until the full block of data is trans-
ferred.

DMA transfers can either occur one byte at a time or all
at once in burst mode. If they occur a byte at a time,
this can allow the CPU to access memory on alternate
bus cycles — this is called cycle stealing since the DMA
controller and CPU contend for memory access. In burst
mode DMA, the CPU can be put on hold while the DMA
transfer occurs and a full block of possibly hundreds or
thousands of bytes can be moved.”! When memory cy-
cles are much faster than processor cycles, an interleaved
DMA cycle is possible, where the DMA controller uses
memory while the CPU cannot.

In a bus mastering system, the CPU and peripherals can
each be granted control of the memory bus. Where a pe-
ripheral can become bus master, it can directly write to
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system memory without involvement of the CPU, pro-
viding memory address and control signals as required.
Some measure must be provided to put the processor into
a hold condition so that bus contention does not occur.

15.2 Modes of operation

15.2.1 Burst mode

An entire block of data is transferred in one contiguous
sequence. Once the DMA controller is granted access to
the system bus by the CPU, it transfers all bytes of data
in the data block before releasing control of the system
buses back to the CPU, but renders the CPU inactive for
relatively long periods of time. The mode is also called
“Block Transfer Mode”. It is also used to stop unneces-
sary data.

15.2.2 Cycle stealing mode

The cycle stealing mode is used in systems in which the
CPU should not be disabled for the length of time needed
for burst transfer modes. In the cycle stealing mode, the
DMA controller obtains access to the system bus the same
way as in burst mode, using BR (Bus Request) and BG
(Bus Grant) signals, which are the two signals control-
ling the interface between the CPU and the DMA con-
troller. However, in cycle stealing mode, after one byte of
data transfer, the control of the system bus is deasserted
to the CPU via BG. It s then continually requested again
via BR, transferring one byte of data per request, until
the entire block of data has been transferred. By con-
tinually obtaining and releasing the control of the system
bus, the DMA controller essentially interleaves instruc-
tion and data transfers. The CPU processes an instruc-
tion, then the DMA controller transfers one data value,
and so on. On the one hand, the data block is not trans-
ferred as quickly in cycle stealing mode as in burst mode,
but on the other hand the CPU is not idled for as long as in
burst mode. Cycle stealing mode is useful for controllers
that monitor data in real time.

15.2.3 Transparent mode

The transparent mode takes the most time to transfer a
block of data, yet it is also the most efficient mode in
terms of overall system performance. The DMA con-
troller only transfers data when the CPU is performing
operations that do not use the system buses. It is the pri-
mary advantage of the transparent mode that the CPU
never stops executing its programs and the DMA transfer
is free in terms of time. The disadvantage of the transpar-
ent mode is that the hardware needs to determine when
the CPU is not using the system buses, which can be com-
plex.
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15.3 Cache coherency

X -
| CPU X
Cache

Cache incoherence due to DMA

X: old value
¥: new value

______________ ¥
Y '
I |l—( DMA
External Memaory

DMA can lead to cache coherency problems. Imagine a
CPU equipped with a cache and an external memory that
can be accessed directly by devices using DMA. When
the CPU accesses location X in the memory, the current
value will be stored in the cache. Subsequent operations
on X will update the cached copy of X, but not the exter-
nal memory version of X, assuming a write-back cache.
If the cache is not flushed to the memory before the next
time a device tries to access X, the device will receive a
stale value of X.

Similarly, if the cached copy of X is not invalidated when
a device writes a new value to the memory, then the CPU
will operate on a stale value of X.

This issue can be addressed in one of two ways in sys-
tem design: Cache-coherent systems implement a method
in hardware whereby external writes are signaled to the
cache controller which then performs a cache invalidation
for DMA writes or cache flush for DMA reads. Non-
coherent systems leave this to software, where the OS
must then ensure that the cache lines are flushed before an
outgoing DMA transfer is started and invalidated before
a memory range affected by an incoming DMA trans-
fer is accessed. The OS must make sure that the memory
range is not accessed by any running threads in the mean-
time. The latter approach introduces some overhead to
the DMA operation, as most hardware requires a loop to
invalidate each cache line individually.

Hybrids also exist, where the secondary L2 cache is co-
herent while the L1 cache (typically on-CPU) is managed
by software.

15.4 Examples

15.4.1 ISA

In the original IBM PC, there was only one Intel 8237
DMA controller capable of providing four DMA chan-
nels (numbered 0-3), as part of the so-called Industry
Standard Architecture, or ISA. These DMA channels
performed 8-bit transfers and could only address the first
megabyte of RAM. With the IBM PC/AT, a second 8237
DMA controller was added (channels 5-7; channel 4 is
dedicated as a cascade channel for the first 8237 con-
troller), and the page register was rewired to address the
full 16 MB memory address space of the 80286 CPU.
This second controller performed 16-bit transfers.

Due to their lagging performance (2.5 Mbit/sP®l), these
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devices have been largely obsolete since the advent of
the 80386 processor in 1985 and its capacity for 32-bit
transfers. They are still supported to the extent they are
required to support built-in legacy PC hardware on mod-
ern machines. The only pieces of legacy hardware that
use ISA DMA and are still fairly common are Super 1/0
devices on motherboards that often integrate a built-in
floppy disk controller, an IrDA infrared controller when
FIR (fast infrared) mode is selected, and a IEEE 1284
parallel port controller when ECP mode is selected.

Each DMA channel has a 16-bit address register and a
16-bit count register associated with it. To initiate a data
transfer the device driver sets up the DMA channel’s ad-
dress and count registers together with the direction of
the data transfer, read or write. It then instructs the DMA
hardware to begin the transfer. When the transfer is com-
plete, the device interrupts the CPU.

Scatter-gather or vectored I/O DMA allows the transfer
of data to and from multiple memory areas in a single
DMA transaction. It is equivalent to the chaining to-
gether of multiple simple DMA requests. The motiva-
tion is to off-load multiple input/output interrupt and data
copy tasks from the CPU.

DRQ stands for Data request, DACK for Data acknowl-
edge. These symbols, seen on hardware schematics of
computer systems with DMA functionality, represent
electronic signaling lines between the CPU and DMA
controller. Each DMA channel has one Request and one
Acknowledge line. A device that uses DMA must be con-
figured to use both lines of the assigned DMA channel.

Standard ISA DMA assignments:

1. DRAM Refresh (obsolete),
2. User hardware, usually sound card 8-bit DMA
3. Floppy disk controller,

4. Hard disk (obsoleted by PIO modes, and replaced by
UDMA modes), Parallel Port (ECP capable port),
certain SoundBlaster Clones like the OPTi 928.

5. Cascade from XT DMA controller,

6. Hard Disk (PS/2 only), user hardware for all others,
usually sound card 16-bit DMA

7. User hardware.

8. User hardware.

154.2 PCI

A PCT architecture has no central DMA controller, un-
like ISA. Instead, any PCI component can request con-
trol of the bus (“become the bus master") and request to
read from and write to system memory. More precisely,
a PCI component requests bus ownership from the PCI
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bus controller (usually the southbridge in a modern PC
design), which will arbitrate if several devices request bus
ownership simultaneously, since there can only be one bus
master at one time. When the component is granted own-
ership, it will issue normal read and write commands on
the PCI bus, which will be claimed by the bus controller
and will be forwarded to the memory controller using a
scheme which is specific to every chipset.

As an example, on a modern AMD Socket AM2-based
PC, the southbridge will forward the transactions to the
northbridge (which is integrated on the CPU die) us-
ing HyperTransport, which will in turn convert them to
DDR?2 operations and send them out on the DDR2 mem-
orybus. As can be seen, there are quite a number of steps
involved in a PCI DMA transfer; however, that poses lit-
tle problem, since the PCI device or PCI bus itself are
an order of magnitude slower than the rest of the compo-
nents (see list of device bandwidths).

A modern x86 CPU may use more than 4 GB of mem-
ory, utilizing PAE, a 36-bit addressing mode, or the na-
tive 64-bit mode of x86-64 CPUs. In such a case, a de-
vice using DMA with a 32-bit address bus is unable to
address memory above the 4 GB line. The new Double
Address Cycle (DAC) mechanism, if implemented on
both the PCI bus and the device itself, enables 64-
bit DMA addressing. Otherwise, the operating system
would need to work around the problem by either using
costly double buffers (DOS/Windows nomenclature) also
known as bounce buffers (FreeBSD/Linux), or it could
use an IOMMU to provide address translation services if
one is present.

15.43 T/OAT

Main article: I/O Acceleration Technology

As an example of DMA engine incorporated in a general-
purpose CPU, newer Intel Xeon chipsets include a DMA
engine technology called I/O Acceleration Technology
(I/OAT), meant to improve network performance on
high-throughput network interfaces, in particular gigabit
Ethernet and faster.’! However, various benchmarks with
this approach by Intel's Linux kernel developer Andrew
Grover indicate no more than 10% improvement in CPU
utilization with receiving workloads, and no improvement
when transmitting data.[®!

15.44 DDIO

Further performance-oriented enhancements to the
DMA mechanism have been introduced in Intel Xeon
ES5 processors with their Data Direct /O (DDIO) fea-
ture, allowing the DMA “windows” to reside within CPU
caches instead of system RAM. As a result, CPU caches
are used as the primary source and destination for I/O,
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allowing network interface controllers (NICs) to talk di-
rectly to the caches of local CPUs and avoid costly fetch-
ing of the I/O data from system RAM. As a result, DDIO
reduces the overall I/O processing latency, allows pro-
cessing of the I/0 to be performed entirely in-cache, pre-
vents the available RAM bandwidth from becoming a
performance bottleneck, and lowers the power consump-

tion by allowing RAM to remain longer in low-powered
state. [71BI91[10]

154.5 AHB

Main article: Advanced Microcontroller Bus Architec-
ture

In systems-on-a-chip and embedded systems, typical sys-
tem bus infrastructure is a complex on-chip bus such
as AMBA High-performance Bus. AMBA defines two
kinds of AHB components: master and slave. A slave in-
terface is similar to programmed I/O through which the
software (running on embedded CPU, e.g. ARM) can
write/read I/O registers or (less commonly) local mem-
ory blocks inside the device. A master interface can be
used by the device to perform DMA transactions to/from
system memory without heavily loading the CPU.

Therefore, high bandwidth devices such as network con-
trollers that need to transfer huge amounts of data to/from
system memory will have two interface adapters to the
AHB: a master and a slave interface. This is because on-
chip buses like AHB do not support tri-stating the bus or
alternating the direction of any line on the bus. Like PCI,
no central DMA controller is required since the DMA is
bus-mastering, but an arbiter is required in case of mul-
tiple masters present on the system.

Internally, a multichannel DMA engine is usually present
in the device to perform multiple concurrent scatter-
gather operations as programmed by the software.

154.6 Cell

Main article: Cell (microprocessor)

As an example usage of DMA in a multiprocessor-
system-on-chip, IBM/Sony/Toshiba’s Cell processor in-
corporates a DMA engine for each of its 9 processing
elements including one Power processor element (PPE)
and eight synergistic processor elements (SPEs). Since
the SPE’s load/store instructions can read/write only its
own local memory, an SPE entirely depends on DMAs
to transfer data to and from the main memory and local
memories of other SPEs. Thus the DMA acts as a pri-
mary means of data transfer among cores inside this CPU
(in contrast to cache-coherent CMP architectures such as
Intel's cancelled general-purpose GPU, Larrabee).

DMA in Cell is fully cache coherent (note however local

77

stores of SPEs operated upon by DM A do not act as glob-
ally coherent cache in the standard sense). In both read
(“get”) and write (“put”), a DMA command can transfer
either a single block area of size up to 16 KB, or a list of
2 to 2048 such blocks. The DMA command 18 issued by
specifying a pair of a local address and a remote address:
for example when a SPE program issues a put DMA com-
mand, it specifies an address of its own local memory as
the source and a virtual memory address (pointing to ei-
ther the main memory or the local memory of another
SPE) as the target, together with a block size. According
to a recent experiment, an effective peak performance of
DMA in Cell (3 GHz, under uniform traffic) reaches 200
GB per second.!!)

15.5 See also

e AT Attachment
e Blitter

Channel I/O

DMA attack

Polling (computer science)

Remote direct memory access

UDMA
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Hardware verification language

A hardware verification language, or HVL, is a
programming language used to verify the designs of
electronic circuits written in a hardware description lan-
guage. HVLs typically include features of a high-level
programming language like C++ or Java as well as fea-
tures for easy bit-level manipulation similar to those
found in HDLs. Many HVLs will provide constrained
random stimulus generation, and functional coverage
constructs to assist with complex hardware verification.

SystemVerilog, OpenVera, e, and SystemC are the most
commonly used HVLs. SystemVerilog attempts to com-
bine HDL and HVL constructs into a single standard.

16.1 See also

OpenVera

® C

SystemC

System Verilog

Property Specification Language

16.2 References

16.3 External links
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Chapter 17

Mixed-signal integrated circuit

A mixed-signal integrated circuit is any integrated cir-
cuit that has both analog circuits and digital circuits on
a single semiconductor die. 11 21 B1 [ T real-life ap-
plications mixed-signal designs are everywhere, for ex-
ample, a smart mobile phone. However, it is more ac-
curate to call them mixed-signal systems. Mixed-signal
ICs also process both analog and digital signals together.
For example, an analog-to-digital converter is a mixed-
signal circuit. Mixed-signal circuits or systems are typi-
cally cost-effective solutions for building any modern con-
sumer electronics applications.

17.1 Introduction

A mixed-signal system-on-a-chip (AMS-SoC) can be a
combination of analog circuits, digital circuits, intrinsic
mixed-signal circuits (like ADC), and Embedded Soft-
ware.

Integrated Circuits (ICs) are generally classified as digital
(e.g. a microprocessors) or analog (e.g. an operational
amplifier). Mixed-signal ICs are chips that contain both
digital and analog circuits on the same chip. This category
of chip has grown dramatically with the increased use of
3G cell phones and other portable technologies.

Mixed-signal ICs are often used to convert analog signals
to digital signals so that digital devices can process them.
For example, mixed-signal ICs are essential components
for FM tuners in digital products such as media players,
which have digital amplifiers. Any analog signal (such
as an FM radio transmission, a light wave or a sound) can
be digitized using a very basic analog-to-digital converter,
and the smallest and most energy efficient of these would
be in the form of mixed-signal ICs.

Mixed-signal ICs are more difficult to design and man-
ufacture than analog-only or digital-only integrated cir-
cuits. For example, an efficient mixed-signal IC would
have its digital and analog components share a common
power supply. However, as one can imagine, analog and
digital components have very different power needs and
consumption characteristics that make this a non-trivial
goal in chip design.

17.2 Examples

Typically, mixed-signal chips perform some whole func-
tion or sub-function in a larger assembly such as the radio
subsystem of a cell phone, or the read data path and laser
sled control logic of a DVD player. They often contain
an entire system-on-a-chip.

Examples of mixed-signal integrated circuits include
data converters using delta-sigma modulation, analog-to-
digital converter/digital-to-analog converter using error
detection and correction, and digital radio chips. Dig-
itally controlled sound chips are also mixed-signal cir-
cuits. With the advent of cellular technology and network
technology this category now includes cellular telephone,
software radio, LAN and WAN router integrated circuits.

Because of the use of both digital signal processing and
analog circuitry, mixed-signal ICs are usually designed
for a very specific purpose and their design requires a high
level of expertise and careful use of computer aided de-
sign (CAD) tools. Automated testing of the finished chips
can also be challenging. Teradyne, Agilent, and Texas In-
struments are the major suppliers of the test equipment
for mixed-signal chips.

The particular challenges of mixed signal include:

e CMOS technology is usually optimal for digital per-
formance and scaling while bipolar transistors are
usually optimal for analog performance, yet until the
last decade it has been difficult to either combine
these cost-effectively or to design both analog and
digital in a single technology without serious per-
formance compromises. The advent of technologies
like high performance CMOS, BiCMOS, CMOS
SOI and SiGe have removed many of the compro-
mises that previously had to be made.

Testing functional operation of mixed-signal ICs re-
mains complex, expensive and often a “one-off” im-
plementation task.

Systematic design methodologies comparable to
digital design methods are far more primitive in the
analog and mixed-signal arena. Analog circuit de-
sign can not generally be automated to nearly the

80



17.6. FURTHER READING

extent that digital circuit design can. Combining the
two technologies multiplies this complication.

Fast-changing digital signals send noise to sensi-
tive analog inputs. One path for this noise is
substrate coupling. A variety of techniques are used
to attempt to block or cancel this noise coupling,
such as fully differential amplifiers,”) P+ guard-
rings,!9) differential topology, on-chip decoupling,
and triple-well isolation.”!

17.3 Commercial examples

ICsense

AnSem

Atari POKEY

MOS Technology SID

PSoC - Cypress PSoC Programmable System on
Chip

System to ASIC
Texas Instruments' MSP430
Triad Semiconductor

‘Wolfson Microelectronics

Most modern radio and communications use mixed signal
circuits.

17.4 See also

Analog front-end
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Chapter 18

Radio frequency

This article is about the generic oscillation. For the
radiation, see Radio wave. For the electronics, see Radio
frequency engineering.
“RF” redirects here.
biguation).

For other uses, see RF (disam-

Radio frequency (RF) is any of the electromag-
netic wave frequencies that lie in the range extending
from around 3 kHz to 300 GHz, which include those
frequencies used for communications or radar signals.[!)
RF usually refers to electrical rather than mechanical os-
cillations. However, mechanical RF systems do exist (see
mechanical filter and RF MEMS).

Although radio frequencyis arate of oscillation, the term
“radio frequency” or its abbreviation “RF” are used as a
synonym for radio —i.e., to describe the use of wireless
communication, as opposed to communication via elec-
tric wires. Examples include:

o Radio-frequency identification

e ISO/IEC 14443—2 Radio frequency power and sig-
nal interface™

18.1 Special properties of RF cur-
rent

Electric currents that oscillate at radio frequencies
have special properties not shared by direct current or
alternating current of lower frequencies.

e The energy in an RF current can radiate off a con-
ductor into space as electromagnetic waves (radio
waves); this is the basis of radio technology.

e RF current does not penetrate deeply into electrical
conductors but tends to flow along their surfaces; this
is known as the skin effect. For this reason, when
the human body comes in contact with high power
RF currents it can cause superficial but serious burns
called RF burns (Radiation burns).

o RF currents applied to the body often do not cause
the painful sensation of electric shock as do lower
frequency currents.?/™ This is because the current
changes direction too quickly to trigger depolariza-
tion of nerve membranes.

e RF current can easily ionize air, creating a conduc-
tive path through it. This property is exploited by
“high frequency” units used in electric arc welding,
which use currents at higher frequencies than power
distribution uses.

o Another property is the ability to appear to flow
through paths that contain insulating material, like
the dielectric insulator of a capacitor.

o When conducted by an ordinary electric cable, RF
current has a tendency to reflect from discontinu-
ities in the cable such as connectors and travel back
down the cable toward the source, causing a condi-
tion called standing waves. Therefore, RF current
must be carried by specialized types of cable called
transmission line.

18.2 Radio communication

To receive radio signals an antenna must be used. How-
ever, since the antenna will pick up thousands of radio
signals at a time, a radio tuner is necessary to fune into a
particular frequency (or frequency range).’ This is typ-
ically done via a resonator — in its simplest form, a cir-
cuit with a capacitor and an inductor form a tuned cir-
cuit. The resonator amplifies oscillations within a partic-
ular frequency band, while reducing oscillations at other
frequencies outside the band. Another method to isolate
a particular radio frequency is by oversampling (which
gets a wide range of frequencies) and picking out the fre-
quencies of interest, as done in software defined radio.

The distance over which radio communications is use-
ful depends significantly on things other than wavelength,
such as transmitter power, receiver quality, type, size, and
height of antenna, mode of transmission, noise, and in-
terfering signals. Ground waves, tropospheric scatter and
skywaves can all achieve greater ranges than line-of -sight
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propagation. The study of radio propagation allows esti-
mates of useful range to be made.

18.3 Frequency bands

Main article: Radio spectrum

18.4 In medicine

Radio frequency (RF) energy, in the form of radiat-
ing waves or electrical currents, has been used in med-
ical treatments for over 75 years,” generally for min-
imally invasive surgeries, using radiofrequency ablation
and cryoablation, including the treatment of sleep ap-
nea.®! Magnetic resonance imaging (MRI) uses radio fre-
quency waves to generate images of the human body.

Radio frequencies at non-ablation energy levels are some-
times used as a form of cosmetic treatment that can
tighten skin, reduce fat (lipolysis), or promote healing.”!

RF diathermy is a medical treatment that uses RF in-
duced heat as a form of physical or occupational ther-
apy and in surgical procedures. It is commonly used for
muscle relaxation. It is also a method of heating tissue
electromagnetically for therapeutic purposes in medicine.
Diathermy 18 used in physical therapy and occupational
therapy to deliver moderate heat directly to pathologic le-
sions in the deeper tissues of the body. Surgically, the
extreme heat that can be produced by diathermy may
be used to destroy neoplasms, warts, and infected tis-
sues, and to cauterize blood vessels to prevent exces-
sive bleeding. The technique is particularly valuable in
neurosurgery and surgery of the eye. Diathermy equip-
ment typically operates in the short-wave radio frequency
(range 1-100 MHz) or microwave energy (range 434—
915 MHz).

Pulsed electromagnetic field therapy (PEMF) is a medi-
cal treatment that purportedly helps to heal bone tissue re-
ported in arecent NASA study. This method usually em-
ploys electromagnetic radiation of different frequencies
- ranging from static magnetic fields, through extremely
low frequencies (ELF) to higher radio frequencies (RF)
administered in pulses.

18.5 Effects on the human body

18.5.1 Extremely low frequency RF

High-power extremely low frequency RF with electric
field levels in the low kV/m range are known to induce
perceivable currents within the human body that cre-
ate an annoying tingling sensation. These currents will
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typically flow to ground through a body contact surface
such as the feet, or arc to ground where the body is well
insulated.1I111]

18.5.2 Microwaves

Main article: Microwave burn

Microwave exposure at low-power levels below the
Specific absorption rate set by government regulatory
bodies are considered harmless non-ionizing radiation
and have no effect on the human body. However, levels
above the Specific absorption rate set by the U.S. Federal
Communications Commission are considered potentially
harmful (see Mobile phone radiation and health).

Long-term human exposure to high-levels of microwaves
is recognized to cause cataracts according to experi-
mental animal studies and epidemiological studies. The
mechanism is unclear but may include changes in heat
sensitive enzymes that normally protect cell proteins in
the lens. Another mechanism that has been advanced is
direct damage to the lens from pressure waves induced in
the aqueous humor.

High-power exposure to microwave RF is known to cre-
ate a range of effects from lower to higher power levels,
ranging from unpleasant burning sensation on the skin
and microwave auditory effect, to extreme pain at the
mid-range, to physical burning and blistering of skin and
internals at high power levels (see microwave burn).

18.5.3 General RF exposure

The 1999 revision of Canadian Safety Code 6 recom-
mended electric field limits of 100 kV/m for pulsed EMF
to prevent air breakdown and spark discharges, men-
tioning rationale related to auditory effect and energy-
induced unconsciousness in rats.''?) The pulsed EMF
limit was removed in later revisions, however.[13]

For health effects see electromagnetic radiation and
health.

For high-power RF exposure see radiation burn.

For low-power RF exposure see radiation-induced can-
cer.

18.6 As a weapon

See also: Directed energy weapons § Microwave weapons

A heat ray is an RF harassment device that makes use of
microwave radio frequencies to create an unpleasant heat-
ing effect in the upper layer of the skin. A publicly known
heat ray weapon called the Active Denial System was de-
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veloped by the US military as an experimental weapon to
deny the enemy access to an area. A death ray is a weapon
that delivers heat ray electromagnetic energy at levels that
injure human tissue. The inventor of the death ray, Harry
Grindell Matthews, claims to have lost sight in his left eye
while developing his death ray weapon based on a prim-
itive microwave magnetron from the 1920s (note that a
typical microwave oven induces a tissue damaging cook-
ing effect inside the oven at about 2 kV/m.)

18.7 Measurement

Since radio frequency radiation has both an electric and a
magnetic component, it is often convenient to express in-
tensity of radiation field in terms of units specific to each
component. The unit volts per meter (V/m) is used for the
electric component, and the unit amperes per meter (A/m)
is used for the magnetic component. One can speak of an
electromagnetic field, and these units are used to provide
information about the levels of electric and magnetic field
strength at a measurement location.

Another commonly used unit for characterizing an RF
electromagnetic field is power density. Power density is
most accurately used when the point of measurement is
far enough away from the RF emitter to be located in what
is referred to as the far field zone of the radiation pattern.
In closer proximity to the transmitter, i.e., in the “near
field” zone, the physical relationships between the elec-
tric and magnetic components of the field can be com-
plex, and it is best to use the field strength units discussed
above. Power density is measured in terms of power per
unit area, for example, milliwatts per square centimeter
(mW/cm?). When speaking of frequencies in the mi-
crowave range and higher, power density is usually used to
express intensity since exposures that might occur would
likely be in the far field zone.

18.8 See also

o Amplitude modulation

o FElectromagnetic Interference

o FElectromagnetic radiation

e FElectromagnetic spectrum

e EMF measurement

e Frequency allocation

e Frequency bandwidth

e Frequency modulation

o Plastic welding

o Pulsed electromagnetic field therapy

e Spectrum management
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Bot, FSFHM, Embeddedtechcon, Leonardoaraujo.santos, Jegan2510, MUTHUKUMAR SRINIVASAN, MRTHK and Anonymous: 737

e MPSoC Source: https://en.wikipedia.org/wiki/MPSoC?0ldid=669925767 Contributors: Jdiemer, Malcolma, Pegship, Alaibot, Vjardin,
Rilak, Addbot, I dream of horses, Gf uip, ZéroBot, Dameunadebravas, Jmsbush, Arcandam, John.fernadez and Anonymous: 14

e System in package Source: https://en.wikipedia.org/wiki/System_in_package?0ldid=689827797 Contributors: Omegatron, Jpo, David-
Cary, Abdull, Twisp, Alex.g, Intgr, Jared Preston, Bgwhite, TexasAndroid, Jpbowen, Mikeblas, Tevildo, SmackBot, Radagast83, Peter-
JohnBishop, Tawkerbot4, Underpants, Thijs!bot, Kubanczyk, Escarbot, Magioladitis, Cspan64, Warut, Whitethunder79, Rei-bot, The
Seventh Taylor, Rilak, Yi Chen Chen, Addbot, Twirligig, Vickychenl2345, Dileepand, Kevjonesin, EdoBot, TechGeek70, Privatechef,
Dark Silver Crow, Nadavami, Comp.arch, Microfab guy, Aytk and Anonymous: 21

e Universal Synchronous/Asynchronous Receiver/Iransmitter Source:  https://en.wikipedia.org/wiki/Universal_Synchronous/
Asynchronous_Receiver/Transmitter?oldid=703784344 Contributors: Boco XLVII, RussBot, Boggsa, Jesse Viviano, Matt B., Qu3a,
PolyTekPatrick, Yobot, AnomieBOT, Raven Onthill and Anonymous: 2

e Serial Peripheral Interface Bus Source: https://fen.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus?oldid=704779254 Contributors:
Damian Yerrick, Ray Van De Walker, Heron, Cyp, William M. Connolley, Glenn, HPA, Colin Marquardt, Darkhorse, Blades, Giftlite,
Ds13, Gadfium, Kiteinthewind, Togo~enwiki, Elektron, Sam, Vijaykumar~enwiki, Snuffkin~enwiki, Imroy, Ralph Corderoy, Thomas
Willerich, Plugwash, Mondalaci, Kwamikagami, Southen, Sietse Snel, Zoggie50, Polluks, Vapier, Kundor, Sebastian Goll, Hopp, Jlas-
soff, Tauwasser, Wtshymanski, Cbumett, Tocksin, David Haslam, Macaddct1984, Alecv, Rjwilmsi, Tizio, Allen Moore, FlaBot, Chobot,
YurikBot, John2kx, Shaddack, Rsrikanth05, Marq Kole, Voidxor, Museo8bits, HereToHelp, SmackBot, Larry Doolittle, Ankitkankane,
Pieleric, Toddintr, Oli Filth, Letdorf, Tsca.bot, Plasmal6, Frap, Jinxed, Chlewbot, Vegard, Mosca, Cybercobra, Doodle77, Mani-
acK, Kvng, Vanisaac, Mamanakis, CmdrObot, Jesse Viviano, Rmallins, Garrickk, Libro0, Christian75, Mtpaley, Zalgo, Joel wood-
ward, Djmdjm, Alex Forencich, Jtmoon, Widefox, Ebikeguy, Spencer, Alphachimpbot, Xoneca, Michael Stangeland, Japo, Kgfleis-
chmann, Omnara, 99th Percentile, R'n'B, CommonsDelinker, Javawizard, Jreybert, Inwind, Scls19fr, Daltuna, Amikake3, Kunjan pa-
tel, Senarvi, Melsaran, Logan, Kbrose, SieBot, Ceson~enwiki, Cashannon, GeiwTeol, Crm123, EnOreg, Nskillen, Agunther, Clue-
Bot, Nsk92, Iandiver, Sylvain Leroux, PixelBot, Amolhshah, Ginbot86, XLinkBot, Tonypdmtr, Dgtsyb, Broke Back Records, Addbot,
Mortense, Tothwolf, MrOllie, Semiwiki, Crspybits, Tide rolls, OlEnglish, Luckas-bot, Yobot, Jinlei, Julia W, Jordsan, Alhaiksandher,
AnomieBOT, Adeliine, Materialscientist, Simonjohndoherty, Xgbot, Yenz820, Nasa-verve, GrouchoBot, RibotBOT, DaleDe, Jcmc-
clurg, FrescoBot, LucienBOT, Username20090319, Ionutzmovie, Vishnu2011, Moggiel00, Teuxe, Jusses2, MastiBot, RCelistrinoTeix-
eira, Ericbwiki, Hoptroff, Jnmbk, HDLfriki, Cwavnew, Cp82, TheMesquito, Dhiraj1984, EmausBot, Dewritech, GoingBatty, Matthieu
CASTET, Kalin KOZHUHAROV, Encijia, Sbmeirow, Tronixstuff, JohnBoxall, Edgar.bonet, Li Zaodie, Fftzyy, ClueBot NG, Matthi-
aspaul, O.Koslowski, Widr, Viswanathamk, Helpful Pixie Bot, Wbm1058, BG19bot, Charon77, Hz.tiang, IveGoneAway, Kendall-K1,
Wikih101, Simon naylor, M.A.Elfar, Tonusamuel, Markuj7, ChrisGualtieri, Jzj1993, Makecat-bot, Frosty, Currystomper, Faizan, Mo-
han. PAKAL APATI, 1nafar, PirateKing42, Buntybhai, Wasquewhat, Knivd, Bbrice86, ESP1 ROCKS, Neuliss, Bafeigum, Jegan2510, Fly-
xtop, RunnerRick(08 and Anonymous: 336
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e Analog-to-digital converter Source: https://en.wikipedia.org/wiki/Analog-to-digital_converter?oldid=702882001 Contributors: Damian
Yerrick, Derek Ross, Tbackstr, Jkominek, Ellmist, Heron, Michael Hardy, Ixfd64, Ahoerstemeier, Stevenj, Snoyes, Andres, Tristanb, GRA-
HAMUEK, Charles Matthews, Jukeboksi, Jitse Niesen, Colin Marquardt, Ethanl., Omegatron, Wernher, Thue, Altenmann, Ojigiri~enwiki,
Roscoe x, Hadal, Wikibot, Jleedev, Cutler, Giftlite, DavidCary, Wolfkeeper, BenFrantzDale, Everyking, Micru, Nayuki, Ablewisuk,
Hellisp, Sonett72, BrianWilloughby, DJS~enwiki, Chepry, Talkstosocks, Dufekin, Guanabot, Pjacobi, Mecanismo, Kooo, Evice, STHay-
den, CanisRufus, Nwerneck, Meggar, Cmdrjameson, Johnteslade, Klo~enwiki, Hooperbloob, Nsaa, Alansohn, Sbeath, BemardH, Wt-
shymanski, Sciurine, Crystalllized, Gene Nygaard, Feezo, Davidkazuhiro, Csk, Jeff3000, Malel979, Tslocum, BD2412, Haikupoet,
Pleiotrop3, Cat5nap, Alll~enwiki, Arnero, Margosbot~enwiki, Mcleodm, Lmatt, Goudzovski, Alvin-cs, Chobot, Bgwhite, Adoniscik, Uk-
Paolo, YurikBot, RobotE, Shawn81, CambridgeBayWeather, Yyy, Shaddack, NawlinWiki, Jaxl, Erislover, Welsh, Neil.steiner, Nick C,
Botad7, Brisvegas, Zipcube, David Underdown, LeonardoRob0t, Xorx, Garion96, GrinBot~enwiki, Yoshm, SmackBot, KnowledgeOf-
Self, Eskimbot, Commander Keane bot, Gilliam, Chris the speller, Bluebot, Keegan, Oli Filth, EncMstr, Jerome Charles Potts, Adpete,
Nbarth, Bob K, Southcaltree, RProgrammer, KaiserbBot, JonHarder, Rrburke, Stigwall, Romanski, Scientizzle, Saxbryn, Kvng, Hul2,
Chetvorno, JohnTechnologist, CmdrObot, Pegasusbot, Requestion, Wsmarz, FakingNovember, Mblumber, Ring0, Thijs !bot, D4g0thur,
Mbell, Kaleem str, Teh tennisman, Electron9, Nemilar, Legend Saber, AntiVandalBot, Whiteflye, JAnDbot, MER-C, Jheiv, GurchBot,
SapnaArun, Jahoe, LittleOldMe, A4, WODUP, 2842 1u2232nfenfcenc, Americanhero, Tjwikipedia, Theslaw, Sicaspi, MartinBot, Scottr9,
Nelbs, Glrx, J.delanoy, Ginsengbomb, Cullen kasunic, 4 johnny, Krishfeelmylove, LordAnubisBOT, Iverson2, Coppertwig, Fmltavares,
VoidLurker, VolkovBot, ICE77, Oshwah, Qllach, Peteraisher, Schickaneder, Crohnie, LeaveSleaves, VanishedUserABC, Purgatory Fubar,
Spinningspark, Brianga, Biscuittin, SieBot, Bhimaji, Msadaghd, Josecampos, MinorContributor, Reinderien, Cindyl41, Travelingseth,
Steven Crossin, Sfan00 IMG, ClueBot, Binkstemet, Janlnad, Sandpiper800, Night Goblin, Timrprobocom, Nrpickle, Ivnryn, Jusdafax,
ChardonnayNimeque, Wiki libs, Zootboy, DumZiBoT, Theol77, Analogkidr, XLinkBot, Vayalir, Stickee, Blowfishie, Ali Esfandiari, Sil-
vonenBot, MystBot, Addbot, Mortense, Fgnievinski, GyroMagician, MrOllie, Redheylin, Dayewalker, Lightbot, Perry chesterfield, Pietrow,
Legobot, Drpickem, Yobot, Themfromspace, Kamikaze Bot, AnomieBOT, MR7526, Materialscientist, DeadTotoro, Overmanic, LilHelpa,
Xgbot, The AMmollusc, TinucherianBot II, Shalabh24, Heddmj, J04n, GrouchoBot, SassoBot, Alvin Seville, Wikihitech, Shadowjams,
Thehelpfulbot, FrescoBot, Febert, Smurfettekla, Berrinkursun, Gbalasandeep, Anitauky, Nacho Insular, ClickRick, Davidmeo, Robink,
Sjbtalchion, FoxBot, TecABC, Overjive, Amab1984, Dhirajl1984, Alison22, EmausBot, Solarra, Satan13 1984, Dcirovic, Samurai meat-
wad, Zueignung, Puffin, Christian way, Pavan206, Wakebrdkid, Teapeat, Ttmartin2888, ClueBot NG, CocuBot, Techeditorl, AeroPsico,
Helptul Pixie Bot, MusikAnimal, Bpromo7, Gayanmyte, Erynofwales, Windforce 1989, Jimi75, Sparkie82, 08Peterl5, Syl1729, Chris-
Gualtieri, AK456, VimrishoO01, Radiodef, Binglau, EdSaWiki, Raka99, Michipedian, Gillsandeep2k, Rassom anatol, Hhm8, Delar303,
Davo962, KasparBot, Gorplex and Anonymous: 402

e Digital-to-analog converter Source: https://en.wikipedia.org/wiki/Digital-to-analog_converter?oldid=701562596 Contributors: Damian
Yerrick, The Anome, PierreAbbat, Waveguy, Mjb, Heron, Michael Hardy, TakuyaMurata, ZoeB, Glenn, GRAHAMUK, Bemoeial,
Reddi, Zoicon5, Maximus Rex, Omegatron, Wernher, Thue, Topbanana, Robbot, Kizor, Ojigiri~enwiki, Lupo, Giftlite, Wolfkeeper,
BenFrantzDale, Bradeos Graphon, Ssd, SWAdair, CryptoDerk, Stevenalex, Hellisp, Hugh Mason, BrianWilloughby, DJS~enwiki,
Chmod007, Chepry, Imroy, TedPavlic, Paul August, Htl 848, CanisRufus, Meestaplu, Rbj, Johnteslade, Giraffedata, Photonique, Timecop,
Hooperbloob, Alansohn, Jannev~enwiki, Cburnett, Algocu, Bookandcoffee, Kenyon, Bobrayner, Woohookitty, StradivariusTV, Jeff3000,
Gradulov, CPES, Mandarax, BD2412, Joe Decker, FlaBot, Arnero, Mcleodm, Lsuff, Chobot, RobotE, Thane, Tharanath1981, Gar-
ion96, Yoshm, SmackBot, Fnfd, Tex23, Andy M. Wang, EncMstr, Southcaltree, RProgrammer, JonHarder, Adamantios, Sturm, UVnet,
Kvng, Lee Carre, Nczempin, HenkeB, Dept of Alchemy, Thijs!bot, Ecclaim, AntiVandalBot, Salgueiro~enwiki, Father Goose, Rivertorch,
Soulbot, Calltech, Sicaspi, MartinBot, Anaxial, Glrx, Abuthayar, R'n'B, Nono64, J.delanoy, Boodidha sampath, Ontarioboy, VolkovBot,
ICE77, TXiKiBoT, Neildmartin, Spinningspark, Mahira75249, Crm123, Masgatotkaca, Travelingseth, Binksternet, VQuakr, Pointil-
list, ChardonnayNimeque, Arjayay, Andrebragareis, DanteLectro, DumZiBoT, Analogkidr, XLinkBot, StormtrooperTK421, Addbot,
Mortense, Xx521xx, Cst17, MrOllie, Redheylin, Semiwiki, Tide rolls, Lightbot, Legobot, Luckas-bot, Yobot, AnomieBOT, Materialsci-
entist, Danno uk, Xgbot, TheAMmollusc, RibotBOT, Louperibot, HRoestBot, 10metreh, RedBot, RobinK, Overjive, Brainmedley, Suffu-
sion of Yellow, Ravenmewtwo, Incminister, Karkat-H-NJITWILL, John Siau, Lexusuns, Chad. Farmer, Rpall43, Wsko.ko, ClueBot NG,
Blitzmut, Chester Markel, Helpful Pixie Bot, Bpromo7, Josvanehv, Binglau, Camyoung54, Glaisher, ScotXW, Mohammadali Aghakhani,
KasparBot, Idahoprogrammer and Anonymous: 202

e Power management Source: https://en.wikipedia.org/wiki/Power_management?oldid=707526110 Contributors: Nixdorf, Cjmnyc, Itai,
Vaceituno, Raul654, Mrdice, Niteowlneils, Jrdioko, Beland, Mako(098765, EagleOne, Martpol, Rodtrent, Plugwash, Sietse Snel, BalooUr-
sidae, TheParanoidOne, Voxadam, Mindmatrix, Tokek, Coneslayer, Intgr, Bgwhite, Simesa, RussBot, Stephenb, Grafen, AGToth, Eptin,
SmackBot, McGeddon, Gilliam, Oli Filth, Frap, Verycharpie, Mellery, Cydebot, Gogo Dodo, Kozuch, Thijs!bot, Widefox, Jared Hunt,
MER-C, Beagel, Oehlingb, Wikimike2007, PolarYukon, Mgmcginn, Johnuniq, Zodon, Muffinon, Addbot, Ramu50, Yobot, A.amitkumar,
Verismic, Probinso99, Christoph hausner, EmausBot, Primefac, Matthiaspaul, MarkPeters45, BG19bot, Gkakkar88, Civeel, BattyBot,
Greenstruck, Phamnhatkhanh, SJ Defender, Abhinandan tiwari2, Hlo u fang axaxaxas mlo, ClearBlueSky85, Newwikieditor678, Ljsingh,
Jegan2510 and Anonymous: 29

e Bus (computing) Source: https://en.wikipedia.org/wiki/Bus_(computing)?oldid=701784335 Contributors: Uriyan, The Anome, Drj, Css,
Dachshund, Shd~enwiki, Aldie, Fubar Obfusco, Deb, SimonP, Maury Markowitz, Heron, Olivier, Michael Hardy, Mahjongg, Nixdorf, Egil,
ArnoLagrange, Mac, Nanshu, Glenn, Nikai, Rl, GRAHAMUK, CAkira, Reddi, Magnus.de, Colin Marquardt, Tschild, Saltine, Wernher,
Thue, Veghead, Jni, Chuunen Baka, Robbot, MrJones, Fredrik, Scott McNay, RedWolf, Naddy, Merovingian, Hadal, Marc Venot, David-
Cary, Kenny sh, Guanaco, Ezhiki, Tom-, Ferdinand Pienaar, AlistairMcMillan, VampWillow, Uzume, Sam Hocevar, Klemen Kocjancic,
Mike Rosoft, Olki, Imroy, Slady, JTN, Discospinster, Guanabot, Bert490, Xezbeth, Mjpieters, Horsten, WegianWarrior, Johannes Rohr,
Limbo socrates, Violetriga, Tooto, CanisRufus, R. S. Shaw, Brim, SpeedyGonsales, Tritium6, James Foster, Matthew Wilcox, Civvi~enwiki,
Hopp, Riana, Fritzpoll, Mailer diablo, Helixblue, Wtshymanski, Proton, Nuno Tavares, Woohookitty, Timharwoodx, Rocastelo, Hb-
dragon88, JRHorse, Isnow, Cyberman, Wayward, Graham87, Arunib, Kbdank71, Pako, FlaBot, SchuminWeb, Moreati, Numa, RexNL,
Nimur, Revolving Bugbear, Intgr, CiaPan, Chobot, DVdm, Bgwhite, YurikBot, Fabartus, CambridgeBayWeather, Rsrikanth(5, Pseu-
domonas, Cpuwhizl1, Jeword, ENeville, Nowa, Pagrashtak, Dijxtra, Maverick Leonhart, Nick, Ospalh, Samir, Scope creep, Wknight94,
Johndburger, Phgao, Sean Whitton, Kevin, Curpsbot-unicodify, Tom Morris, Attilios, SmackBot, KelleyCook, Commander Keane bot,
Gilliam, Kurykh, Jerome Charles Potts, Craig t moore, Fjmustak, Can't sleep, clown will eat me, Egsan Bacon, Frap, HarisM, Au-
todme, A5b, Luigi.a.cruz, SashatoBot, SpareHeadOne, DHR, Mathias-S, Beetstra, Kvng, DabMachine, Iridescent, Ihatethetv, SkyWalker,
Raysonho, Nhumfrey, Jesse Viviano, ShoobyD, ST47, Epbr123, Kubanczyk, Sobreira, I do not exist, Doyley, Yettie0711, Andrew sh, Men-
tifisto, AntiVandalBot, Wayiran, JAnDbot, NapoliRoma, BenB4, Acroterion, Bongwarrior, VoABot II, Wikidudeman, Becksguy, Twsx,
Schily, Avicennasis, BrianGV, GermanX, Amazonite, AVRS, MartinBot, Dima373, Rpclod, J.delanoy, Cpiral, Pyams, McSly, Peskydan,
Cometstyles, CompNerd1 1, Idioma-bot, Priceman86, VolkovBot, AndyLandy, Philip Trueman, Technopat, Hgb, Anna Lincoln, BotKung,
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Natg 19, Legoktm, Cowlinator, EmxBot, Regregex, SieBot, Ham Pastrami, Bentogoa, Flyer22 Reborn, Oda Mari, Egrian, Lightmouse,
ClueBot, GorillaWarfare, Rilak, No such user, Jusdafax, Sun Creator, Lunchscale, BOTarate, Jonverve, Redhill54, XLinkBot, Dsimic,
Deineka, Addbot, GargoyleBot, CanadianLinuxUser, Graham.Fountain, CarsracBot, BepBot, Lightbot, OlEnglish, Mike88chan, Legobot,
Hydrofiber, Luckas-bot, Yobot, OrgasGirl, Crispmuncher, Tuxraider reloaded, Mmxx, Nallimbot, IW.HG, Keithbob, Toko50, Materi-
alscientist, Citation bot, TinucherianBot 11, Capricom42, Nasa-verve, Wearingaredhat, RibotBOT, FrescoBot, 1'tp, Krj373, W Nowicki,
Amaka555, Yahia.barie, RedBot, MastiBot, Serols, Trappist the monk, Boriss111, Jeffrd10, Cp82, DARTH SIDIOUS 2, RjwilmsiBot,
BlakeD360, Midhart90, Brightbulb, EmausBot, John of Reading, Stryn, ValC, Wikipelli, Thecheesykid, Prof Karl, Surya Prakash.S.A.,
Donner60, Atrivo, 28bot, ClueBot NG, Gilderien, Firowkp, Widr, Oddbodz, Helpful Pixie Bot, Wbm1058, Snaevar-bot, Kokkkikumar,
Maxxdxx, ChrisGualtieri, EE JRW, Zeeyanwiki, Lugia2453, Frosty, Greenstruck, Lsmll, LarryWiki2009, Ugog Nizdast, Doenymo, Jian-
hui67, Reddraggone9, Dmtech, 42315413ferq, Derped Monkey Fish, MonkeysEatSwag, Some Gadget Geek, Dghgdsh, KasparBot, 3 of
Diamonds, ToaneeM, Saad elayas khan, Wiser87, Qzd and Anonymous: 310

e Advanced Microcontroller Bus Architecture Source: https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture?
oldid=707542217 Contributors: Nixdorf, Jake Nelson, Giftlite, Chowbok, Imroy, Rich Farmbrough, Anthony Appleyard, Kocio, Kenyon,
Conskeptical, Xiaowen, Alecv, Ketiltrout, Rjwilmsi, Feydey, Intgr, Philpem, SmackBot, Henriok, Frap, Poposhka, Balrog, 2help, Mr-
peteheller, TXiKiBoT, Cootiequits, Lightmouse, Mild Bill Hiccup, SchreiberBike, Airplaneman, Addbot, Lightbot, Softy, Yobot, Patrick-
yip, Materialscientist, Jeanmarc.ayotte, Thehelpfulbot, W Nowicki, Lissajous, AndyHe829, EmausBot, John of Reading, Orphan Wiki,
Gabriele.svelto, Rohit7401, Bnmguy, Jionpedia, Gord207, NeriDavide, EvergreenFir, Muhammadumairzafar, Abhishekreddy kola, Con-
currencyTheory, Jegan2510 and Anonymous: 63

e Direct memory access Source: https://en.wikipedia.org/wiki/Direct_memory_access?0ldid=706265084 Contributors: Bryan Derksen,
Tarquin, Shd~enwiki, Fuzzynerd, Michael Hardy, Llywrch, Notheruser, Nikai, LordK, Furrykef, Pilaf~enwiki, David.Monniaux, David-
maxwaterman, Catskul, Robbot, Liotier, Ninjamask, DocWatson42, Erpel~enwiki, Kenny sh, VampWillow, Uzume, Pgan002, Sjjung,
Abdull, NightMonkey, Richie, Discospinster, Dolda2000, WegianWarrior, Bender235, PutzfetzenORG, CanisRufus, Dudboi, Smalljim,
R. S. Shaw, SpeedyGonsales, Keenan Pepper, Wtmitchell, Wtshymanski, Suruena, Blaxthos, Kenyon, Timharwoodx, Rocastelo, Ae-a, Man-
gojuice, Isnow, Kesla, MassGalactusUniversum, Vary, Z-4195, LjL, Firebug, Arnero, RAMChYLD, Pathoschild, Intgr, Chobot, Arodrig6,
YurikBot, RussBot, Thoreaulylazy, Wimt, PhilipO, Pnorcks, BOT-Superzerocool, Zzuuzz, SmackBot, InverseHypercube, KnowledgeOf -
Self, Chronodm, Aksi great, Brianski, Rmosler2100, Thumperward, Lubos, Kostmo, OrphanBot, JonHarder, ASb, Paulish, SashatoBot,
Augastl 5, Fedallah, Kvng, Tawkerbot2, Jesse Viviano, Xaariz, Keli666, Kubanczyk, W Hukriede, Electron9, Mentifisto, AntiVandal-
Bot, Gioto, Widefox, Seaphoto, Mk*, JAnDbot, MER-C, Kipholbeck, Ferritecore, Michi.bo, Alleborgo, JamesR, Xonicx, ITersp Ilerpos,
VolkovBot, RainierHa, TXiKiBoT, Oshwah, Wicher Minnaard, Ferengi, Chris.franson, EmxBot, SieBot, Galileo seven, Lightmouse, As-
trale01, Hmmmmike, Denisarona, ClueBot, 718 Bot, DragonBot, Excirial, Alexbot, Socrates2008, Goodonel21, Dekisugi, Muro Bot,
Jonverve, Damianesteves, DumZiBoT, Dsimic, Addbot, Rjpryan, Eivindbot, Roux, SpBot, Forbidmario, Numbo3-bot, Legobot, Luckas-
bot, Yobot, OrgasGirl, MDuol3, Eric-Wester, Magog the Ogre, Law, Materialscientist, ArthurBot, Richarddonkin, BenzolBot, MastiBot,
Théi Nhi, Surendhar Murugan, Jfmantis, EmausBot, Dewritech, Racerx11, The Blade of the Northern Lights, Ergaurav.ce, Music Sorter,
Sbmeirow, Carmichael, Bomazi, Snubcube, ITMaverix, Neil P. Quinn, LZ6387, ClueBot NG, Matthiaspaul, Frietjes, Rezabot, Widr,
Helptul Pixie Bot, Pjjanani, BattyBot, Jimw338, The Illusive Man, Mediran, Gajalkar.ashish, Numbermaniac, Frosty, Blakeawesomel0,
ScotXW, Calebcox314, TzachiNoy and Anonymous: 218

e Hardware verification language Source: https://en.wikipedia.org/wiki/Hardware_verification_language?oldid=594025569 Contributors:
Jpbowen, JLaTondre, Jpape, Cydebot, PierreCA22, Cristian Amitroaie, Eslchip, Galileo seven, Coyote83, Addbot, Mortense, Julia W,
AnomieBOT, Locobot, AndyHe829, Gf uip, SFK2 and Anonymous: 2

e Mixed-signal integrated circuit Source: https://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit?oldid=686028201 Contributors:
Heron, Nixdorf, Charles Matthews, DavidCary, A2Kafir, Atant, Wtshymanski, RyanGerbil10, Marasmusine, Woohookitty, Isnow, Tof-
file, SmackBot, Rwender, Oli Filth, RedHillian, Noahspurrier, Caiaffa, BananaFiend, JForget, Amalas, Phatom87, DumbBOT, EdJohnston,
Stedk, Lasai~enwiki, J.delanoy, Jakejuliebaker, ICE77, Indubitably, Synthebot, Spinningspark, Malcolmxl5, EldenCrom, Cyfal, Excirial,
Jeeter07, Addbot, Yangandjiao, MrOllie, Yobot, AnomieBOT, GrouchoBot, Deepon, Wbm1058, Henrique.hirata, Vikochka, Kahtar, Ki-
ranbehara, Ordercrazy, Marieke marieke, Teupdeg, Rickynevada, Amraut77 and Anonymous: 33

e Radio frequency Source: https://fen.wikipedia.org/wiki/Radio_frequency?oldid=699649871 Contributors: WojPob, Zundark, The Anome,
Fredbauder, Aldie, SimonP, Waveguy, Rcingham, Heron, Mintguy, Stevertigo, Kku, Prefect, Bogdangiusca, Palmpilot900, Wfeidt, Conti,
Mulad, RadarCzar, Emperorbma, Reddi, Radiojon, Tero~enwiki, SEWilco, Jerzy, Denelson83, Robbot, Moriori, RedWolf, Arkuat, Stew-
artadcock, Blainster, Hadal, Danceswithzerglings, DocWatson42, Average Earthman, Fleminra, Cantus, Jfdwolff, Bobblewik, Utcursch,
Beland, Ary29, Ukexpat, Klemen Kocjancic, Deglr6328, Jakro64, Discospinster, Guanabot, LindsayH, Harriv, Bender235, El C, Phil-
Hibbs, Bobol192, Sparkgap, MARQUIS111, Haham hanuka, ClementSeveillac, Atlant, Wtmitchell, Wtshymanski, Cbumett, Suruena,
DV8 2XL, Gene Nygaard, WojciechSwiderski~enwiki, Kenyon, Alex.g, Camw, Pol098, Plaws, Zilog Jones, Ch'marr, Isnow, MarkPos,
Zpb52, LimoWreck, Kotukunui, Koavf, Misternuvistor, Mike Peel, Vegaswikian, Fred Bradstadt, Ground Zero, RexNL, Smileyrepublic,
Alvin-cs, Srleffler, King of Hearts, Wavelength, Fabartus, Anonymous editor, Yyy, Giro720, Teb728, Wiki alf, Retired username, Mortein,
Anetode, Hyandat, Voidxor, Shadowblade, Kermi3, User27091, Jules.LT, Aparna82, GraemeL, Alureiter, SmackBot, Rutja76, Aim Here,
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