2

I want to model the shown circuit diagram with a state-space model. However, I cant solve it since I obtain four unknown variables while only three of the derived equations are linear independent. Here is how I obtained my equations:

Electric circuit diagram to be modelled.

The choosen loops are according to the picture below.

Choosen loops.

All 6 possible Kirchhoff voltage equations (clockwise) are

\begin{align} V_{C1}-V_{R1}=0 \qquad (1) \\ V_{R2}+V_{C2}-V_0-V_{R0}-V_{C1}-V_L=0 \qquad (2) \\ V_{DC}-V_{C2}-V_{R2}=0 \qquad (3) \\ V_{R2}+V_{C2}-V_0-V_{R0}-V_{R1}-V_L=0 \qquad (4) \\ V_{DC}-V_0-V_{R0}-V_{C1}-V_L=0 \qquad (5) \\ V_{DC}-V_0-V_{R0}-V_{R1}-V_L=0 \qquad (6) \end{align}

According to graph theory, only three KVL equations are linear independent. Various combinations are possible:

  1. Set of independent equations: (1) + (2) + (3)
  2. Set of independent equations: (1) + (3) + (4)
  3. Set of independent equations: (1) + (3) + (5)
  4. Set of independent equations: (1) + (3) + (6)
  5. Set of independent equations: (1) + (4) + (6)

The two Kirchhoff’s current equations are

\begin{align} i_{R1}=-i_L-i_{C2}-i_{C1} \qquad (7) \\ i_{R0}=i_{C1}+i_{R1} \qquad (8) \end{align}

Inserting (7) in (8) gives

\begin{equation} i_{R0}=-i_L-i_{C2} \qquad (9) \end{equation}

The choosen states are

\begin{align} x_1 = V_{C1} \qquad (10) \\ x_2 = V_{C2} \qquad (11) \\ x_3 = i_{R0} \qquad (12) \end{align}

The inputs are unnumbered as they are not important for the derivation:

\begin{align} u_1 = V_0 \\ u_2 = i_L \end{align}

The equations for the capacitances are

\begin{align} i_{C1} = C_1\cdot\dot{V_{C1}} = C_1\cdot\dot{x_1} \qquad (13) \\ i_{C2} = C_2\cdot\dot{V_{C2}} = C_2\cdot\dot{x_2} \qquad (14) \end{align}

The equation for the inductance is $$ V_{L} = L\cdot\dot{i_{R0}} = L\cdot\dot{x_3} \qquad (15) \\ $$

Equation (7) together with (13) and (14) becomes $$ i_{R1} = -i_L - C_2 \cdot \dot{x}_2 - C_1 \cdot \dot{x}_1 \qquad (16) $$ Equation (9) together with (14) becomes $$ i_{R0} = -i_L - C_2 \cdot \dot{x}_2 \qquad (17) $$

By using equations (10)-(17), the KVL equations (1)-(6) can be brought into the following form:

\begin{align} x_1 + R_1 \cdot i_L + R_1 \cdot C_2 \cdot \color{red}{\dot{x}_2} + R_1 \cdot C_1 \cdot \color{red}{\dot{x}_1} = 0 \qquad (1') \\ (R_2 \cdot C_2 + R_0 \cdot C_2) \cdot \color{red}{\dot{x}_2} + x_2 - V_0 + R_0 \cdot i_L - x_1 - L \cdot \color{red}{\dot{x}_3} = 0 \qquad (2') \\ \color{red}{V_{\text{DC}}} - x_2 - R_2 \cdot C_2 \cdot \color{red}{\dot{x}_2} = 0 \qquad (3') \\ (R_1 \cdot C_2 + R_2 \cdot C_2 + R_0 \cdot C_2) \cdot \color{red}{\dot{x}_2} + x_2 - V_0 + (R_0 + R_1) \cdot i_L + R_1 \cdot C_1 \cdot \color{red}{\dot{x}_1} - L \cdot \color{red}{\dot{x}_3} = 0 \qquad (4') \\ \color{red}{V_{\text{DC}}} - V_0 + R_0 \cdot i_L + R_0 \cdot C_2 \cdot \color{red}{\dot{x}_2} - x_1 - L \cdot \color{red}{\dot{x}_3} = 0 \qquad (5') \\ \color{red}{V_{\text{DC}}} - V_0 + (R_0 + R_1) \cdot i_L + (R_0 \cdot C_2 + R_1 \cdot C_2) \cdot \color{red}{\dot{x}_2} + R_1 \cdot C_1 \cdot \color{red}{\dot{x}_1} - L \cdot \color{red}{\dot{x}_3} = 0 \qquad (6') \end{align}

The detailed derivation of KVL equations (1')-(6') are further down. They should be correct. My problem is as stated before: I only have three linear independent equations, e.g. (1) + (3) + (5). However, as marked in red, using these 3 equations will result in 4 unknown parameters. Thus, I cannot solve for \$\dot{x_1}\$, \$\dot{x_2}\$ and \$\dot{x_3}\$ without them being a function of \$V_{DC}\$. The voltage \$V_{DC}\$ is the voltage across the ideal current source and results from applying the current \$i_L\$ to the circuit. Any help is greatly appreciated.

Detailed derivation of equations (1')-(6'):

Rearranging of (1) Rearranging of (2) Rearranging of (3) Rearranging of (4) Rearranging of (5) Rearranging of (6)

Chris
  • 43
  • 4

2 Answers2

0

First of all I'll present a method that uses Mathematica. Secondly, I assume that the voltage \$\text{V}_0\$ is defined by a voltage source and \$\text{I}_0\$ is defined by a current source. I'll maybe rename resistors, capacitors, inductors, voltages and currents but it will be clear because of the circuit redawn below.


Well, we are trying to analyze the following circuit:

schematic

simulate this circuit – Schematic created using CircuitLab

When we use and apply KCL, we can write the following set of equations:

$$ \begin{cases} \begin{alignat*}{1} \text{I}_1&=\text{I}_2+\text{I}_4\\ \\ \text{I}_5&=\text{I}_2+\text{I}_4\\ \\ \text{I}_5&=\text{I}_0+\text{I}_3\\ \\ \text{I}_1&=\text{I}_0+\text{I}_3 \end{alignat*} \end{cases}\tag1 $$

When we use and apply Ohm's law, we can write the following set of equations:

$$ \begin{cases} \begin{alignat*}{1} \text{I}_1&=\frac{\displaystyle\text{V}_0-\text{V}_1}{\displaystyle\text{R}_1}\\ \\ \text{I}_2&=\frac{\displaystyle\text{V}_1-\text{V}_2}{\displaystyle\text{R}_2}\\ \\ \text{I}_4&=\frac{\displaystyle\text{V}_1-\text{V}_2}{\displaystyle\frac{1}{\text{sC}_1}}\\ \\ \text{I}_5&=\frac{\displaystyle\text{V}_2-\text{V}_3}{\displaystyle\text{sL}}\\ \\ \text{I}_3&=\frac{\displaystyle\text{V}_3-\text{V}_4}{\displaystyle\text{R}_3}\\ \\ \text{I}_3&=\frac{\displaystyle\text{V}_4-0}{\displaystyle\frac{1}{\text{sC}_2}} \end{alignat*} \end{cases}\tag2 $$

The Mathematica code to solve these systems of equations is given by:

Clear["Global`*"];
R1 =;
R2 =;
R3 =;
C1 =;
C2 =;
L =;
V0 = LaplaceTransform[(*place here the (time dependent) input signal \
of the voltage source*), t, s];
I0 = LaplaceTransform[(*place here the (time dependent) input signal \
of the current source*), t, s]; FullSimplify[
 Solve[{I1 == I2 + I4, I5 == I2 + I4, I5 == I0 + I3, I1 == I0 + I3, 
   I1 == (V0 - V1)/R1, I2 == (V1 - V2)/R2, I4 == (V1 - V2)/(1/(s*C1)),
    I5 == (V2 - V3)/(s*L), I3 == (V3 - V4)/R3, 
   I3 == (V4 - 0)/(1/(s*C2))}, {I1, I2, I3, I4, I5, V1, V2, V3, V4}]]
Jan Eerland
  • 7,203
  • 12
  • 21
0

I just found the solution. I was neglecting equation (12). Equating (12) and (17) gives

$$ x_3 = -i_L - C_2 \cdot \dot{x_2} $$ Solving for \$\dot{x_2}\$ gives $$ \dot{x_2} = -\frac{1}{C_2}\cdot i_L - \frac{x_3}{C_2} $$

Thats my missing equation. \$\dot{x_1}\$ is obtained by inserting \$\dot{x_2}\$ in (1'). \$\dot{x_3}\$ is obtained by inserting \$\dot{x_2}\$ in (2').

I got it. Thanks.

Chris
  • 43
  • 4