Well... just doing some algebra on it,
Let:
port{1}.Vref
be \$V_{R1}\$
port{2}.Vref
be \$V_{R2}\$
port{1}.Vinc
be \$V_{I1}\$
port{2}.Vinc
be \$V_{I2}\$
Then,
\begin{eqnarray}
s_{11} = \frac{V_{R1}}{V_{I1}} & \qquad s_{12} = \frac{V_{R1}}{V_{I2}} & \qquad s_{21} = \frac{V_{R2}}{V_{I1}} & \qquad s_{22} = \frac{V_{R2}}{V_{I2}} \\
\end{eqnarray}
substituting,
\begin{eqnarray}
A = \frac{ \left(1 + \frac{V_{R1}}{V_{I1}}\right) \left(1 - \frac{V_{R2}}{V_{I2}}\right) + \frac{V_{R1}}{V_{I2}} \frac{V_{R2}}{V_{I1}} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
B = Z_\textrm{ref} \frac{ \left(1 + \frac{V_{R1}}{V_{I1}}\right) \left(1 + \frac{V_{R2}}{V_{I2}}\right) - \frac{V_{R1}}{V_{I2}} \frac{V_{R2}}{V_{I1}} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
C = \frac{1}{Z_\textrm{ref}} \frac{ \left(1 - \frac{V_{R1}}{V_{I1}}\right) \left(1 - \frac{V_{R2}}{V_{I2}}\right) - \frac{V_{R1}}{V_{I2}} \frac{V_{R2}}{V_{I1}} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
D = \frac{ \left(1 - \frac{V_{R1}}{V_{I1}}\right) \left(1 + \frac{V_{R2}}{V_{I2}}\right) + \frac{V_{R1}}{V_{I2}} \frac{V_{R2}}{V_{I1}} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
\end{eqnarray}
distributing \$V_{I1}\$,
\begin{eqnarray}
A = \frac{ \left(\frac{V_{I1} + V_{R1}}{V_{I1}}\right) \left(\frac{V_{I2} - V_{R2}}{V_{I2}}\right) + \frac{V_{R1}}{V_{I2}} \frac{V_{R2}}{V_{I1}} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
B = Z_\textrm{ref} \frac{ \left(\frac{V_{I1} + V_{R1}}{V_{I1}}\right) \left(\frac{V_{I2} + V_{R2}}{V_{I2}}\right) - \frac{V_{R1}}{V_{I2}} \frac{V_{R2}}{V_{I1}} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
C = \frac{1}{Z_\textrm{ref}} \frac{ \left(\frac{V_{I1} - V_{R1}}{V_{I1}}\right) \left(\frac{V_{I2} - V_{R2}}{V_{I2}}\right) - \frac{V_{R1}}{V_{I2}} \frac{V_{R2}}{V_{I1}} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
D = \frac{ \left(\frac{V_{I1} - V_{R1}}{V_{I1}}\right) \left(\frac{V_{I2} + V_{R2}}{V_{I2}}\right) + \frac{V_{R1}}{V_{I2}} \frac{V_{R2}}{V_{I1}} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
\end{eqnarray}
gathering \$V_{I1} V_{I2}\$,
\begin{eqnarray}
A = \frac{1}{V_{I1} V_{I2}} \frac{ \left(V_{I1} + V_{R1}\right) \left(V_{I2} - V_{R2}\right) + V_{R1} V_{R2} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
B = Z_\textrm{ref} \frac{1}{V_{I1} V_{I2}} \frac{ \left(V_{I1} + V_{R1}\right) \left(V_{I2} + V_{R2}\right) - V_{R1} V_{R2} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
C = \frac{1}{Z_\textrm{ref}} \frac{1}{V_{I1} V_{I2}} \frac{ \left(V_{I1} - V_{R1}\right) \left(V_{I2} - V_{R2}\right) - V_{R1} V_{R2} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
D = \frac{1}{V_{I1} V_{I2}} \frac{ \left(V_{I1} - V_{R1}\right) \left(V_{I2} + V_{R2}\right) + V_{R1} V_{R2} }{ 2 \frac{V_{R2}}{V_{I1}} } \\
\end{eqnarray}
distribute some more,
\begin{eqnarray}
A = & \dfrac{ V_{I1} V_{I2} + V_{R1} V_{I2} - V_{I1} V_{R2} - V_{R1} V_{R2} + V_{R1} V_{R2} }{ 2 V_{I2} V_{R2} } \\
B = Z_\textrm{ref} & \dfrac{ V_{I1} V_{I2} + V_{R1} V_{I2} + V_{I1} V_{R2} + V_{R1} V_{R2} - V_{R1} V_{R2} }{ 2 V_{I2} V_{R2} } \\
C = \dfrac{1}{Z_\textrm{ref}} & \dfrac{ V_{I1} V_{I2} - V_{R1} V_{I2} - V_{I1} V_{R2} + V_{R1} V_{R2} - V_{R1} V_{R2} }{ 2 V_{I2} V_{R2} } \\
D = & \dfrac{ V_{I1} V_{I2} - V_{R1} V_{I2} + V_{I1} V_{R2} - V_{R1} V_{R2} + V_{R1} V_{R2} }{ 2 V_{I2} V_{R2} } \\
\end{eqnarray}
notice rightmost terms cancel out,
\begin{eqnarray}
A = \frac{ V_{I1} V_{I2} + V_{R1} V_{I2} - V_{I1} V_{R2} }{ 2 V_{I2} V_{R2} } \\
B = Z_\textrm{ref} \frac{ V_{I1} V_{I2} + V_{R1} V_{I2} + V_{I1} V_{R2} }{ 2 V_{I2} V_{R2} } \\
C = \frac{1}{Z_\textrm{ref}} \frac{ V_{I1} V_{I2} - V_{R1} V_{I2} - V_{I1} V_{R2} }{ 2 V_{I2} V_{R2} } \\
D = \frac{ V_{I1} V_{I2} - V_{R1} V_{I2} + V_{I1} V_{R2} }{ 2 V_{I2} V_{R2} } \\
\end{eqnarray}
Doesn't seem to be any more useful reduction to be done here.