Moving from a audio effect prototype based on the STM32F407 to the STM32H757. Did a lot of stuff on the F4 with audio but on the H7 I'm getting stuck and can't get a simple audio loopback with DMA. I'm using Cirrus Logic's CS5343 and CS4344 as external ADC/DAC connected to the I2S interface. I2S data frames are read and written in memory with DMA configured in circular RX/TX mode.
Without DMA, audio loopback is OK. However, with DMA, the RX buffer isn't filled. The half complete and complete callbacks are triggered tho.
I'm aware that DMA can't access DTCM RAM and that with cache enabled, data coherency should be taken care of thanks to the MPU configuration and modification of the linker script :
MPU creates a region of 128kB device memory type (TEX : 0b000, not cacheable, bufferable, shareable)
void MPU_Config(void)
{
MPU_Region_InitTypeDef MPU_InitStruct = {0};
/* Disables the MPU */
HAL_MPU_Disable();
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.BaseAddress = 0x30010000;
MPU_InitStruct.Size = MPU_REGION_SIZE_128KB;
MPU_InitStruct.SubRegionDisable = 0x0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enables the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
RX and TX buffers (8kB each) subsections have been placed at 0x30010000 and 0x30012000 (SRAM1 in D2) in the linker script.
I tried to move the buffers in other RAM domains, make the MPU Region as shareable normal memory type but my Rx Buffer remains empty and/or doesn't update.
What I don't get is why my rx buffer isn't filled and updated by the DMA in the first place. If anyone got any clue or hints about what I'm missing, I'm all ears.
Here's the whole main file :
main.c
#include "main.h"
#define BLOCK_SIZE_U16 2048
#ifndef HSEM_ID_0
#define HSEM_ID_0 (0U) /* HW semaphore 0*/
#endif
I2S_HandleTypeDef hi2s2;
DMA_HandleTypeDef hdma_spi2_rx;
DMA_HandleTypeDef hdma_spi2_tx;
void SystemClock_Config(void);
static void MPU_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2S2_Init(void);
static void MX_DMA_Init(void);
__attribute__ ((section(".rxBuffer"), used)) __attribute__ ((aligned (4))) uint16_t rxBuf[BLOCK_SIZE_U16*2];
__attribute__ ((section(".txBuffer"), used)) __attribute__ ((aligned (4))) uint16_t txBuf[BLOCK_SIZE_U16*2];
uint8_t callback_state = 0;
int main(void)
{
int32_t timeout;
MPU_Config();
SCB_EnableICache();
SCB_EnableDCache();
/* Wait until CPU2 boots and enters in stop mode or timeout*/
timeout = 0xFFFF;
while((__HAL_RCC_GET_FLAG(RCC_FLAG_D2CKRDY) != RESET) && (timeout-- > 0));
if ( timeout < 0 )
{
Error_Handler();
}
/* Configure the system clock */
SystemClock_Config();
/* When system initialization is finished, Cortex-M7 will release Cortex-M4 by means of
HSEM notification */
/*HW semaphore Clock enable*/
__HAL_RCC_HSEM_CLK_ENABLE();
/*Take HSEM */
HAL_HSEM_FastTake(HSEM_ID_0);
/*Release HSEM in order to notify the CPU2(CM4)*/
HAL_HSEM_Release(HSEM_ID_0,0);
/* wait until CPU2 wakes up from stop mode */
timeout = 0xFFFF;
while((__HAL_RCC_GET_FLAG(RCC_FLAG_D2CKRDY) == RESET) && (timeout-- > 0));
if ( timeout < 0 )
{
Error_Handler();
}
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_I2S2_Init();
HAL_I2SEx_TransmitReceive_DMA(&hi2s2, txBuf, rxBuf, BLOCK_SIZE_U16);
int offset_r_ptr;
while (1)
{
/* LOOPBACK WITHOUT DMA */
/*
HAL_I2S_Receive(&hi2s2, rxBuf, BLOCK_SIZE_U16*2, 1);
//HAL_Delay(100);
for(int i = 0; i < BLOCK_SIZE_U16*2; i++){
txBuf[i] = rxBuf[i];
}
HAL_I2S_Transmit(&hi2s2, txBuf, BLOCK_SIZE_U16*2, 1);
*/
/* LOOPBACK WITH DMA */
if (callback_state != 0) {
/* Set offset read pointer */
if (callback_state == 1) {
offset_r_ptr = 0;
}
else if (callback_state == 2) {
offset_r_ptr = BLOCK_SIZE_U16;
}
/* Loopback */
for (int i=offset_r_ptr; i<offset_r_ptr+BLOCK_SIZE_U16; i++) {
txBuf[i] = rxBuf[i];
}
callback_state = 0;
}
}
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_DIRECT_SMPS_SUPPLY);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
/** Macro to configure the PLL clock source
*/
__HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSE);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 5;
RCC_OscInitStruct.PLL.PLLN = 160;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV16;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2S2 Initialization Function
* @param None
* @retval None
*/
static void MX_I2S2_Init(void)
{
/* USER CODE BEGIN I2S2_Init 0 */
/* USER CODE END I2S2_Init 0 */
/* USER CODE BEGIN I2S2_Init 1 */
/* USER CODE END I2S2_Init 1 */
hi2s2.Instance = SPI2;
hi2s2.Init.Mode = I2S_MODE_MASTER_FULLDUPLEX;
hi2s2.Init.Standard = I2S_STANDARD_PHILIPS;
hi2s2.Init.DataFormat = I2S_DATAFORMAT_24B;
hi2s2.Init.MCLKOutput = I2S_MCLKOUTPUT_ENABLE;
hi2s2.Init.AudioFreq = I2S_AUDIOFREQ_48K;
hi2s2.Init.CPOL = I2S_CPOL_LOW;
hi2s2.Init.FirstBit = I2S_FIRSTBIT_MSB;
hi2s2.Init.WSInversion = I2S_WS_INVERSION_DISABLE;
hi2s2.Init.Data24BitAlignment = I2S_DATA_24BIT_ALIGNMENT_RIGHT;
hi2s2.Init.MasterKeepIOState = I2S_MASTER_KEEP_IO_STATE_DISABLE;
if (HAL_I2S_Init(&hi2s2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2S2_Init 2 */
/* USER CODE END I2S2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn);
/* DMA1_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
}
/* USER CODE BEGIN 4 */
void HAL_I2SEx_TxRxHalfCpltCallback(I2S_HandleTypeDef *hi2s){
callback_state = 1;
}
void HAL_I2SEx_TxRxCpltCallback(I2S_HandleTypeDef *hi2s){
callback_state = 2;
}
/* USER CODE END 4 */
/* MPU Configuration */
void MPU_Config(void)
{
MPU_Region_InitTypeDef MPU_InitStruct = {0};
/* Disables the MPU */
HAL_MPU_Disable();
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.BaseAddress = 0x30010000;
MPU_InitStruct.Size = MPU_REGION_SIZE_128KB;
MPU_InitStruct.SubRegionDisable = 0x0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enables the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Add-on to the FLASH Linker Script
.buffers(NOLOAD) :
{
. = ALIGN(4);
. = ABSOLUTE (0x30010000);
*(.rxBuffer)
. = ABSOLUTE (0x30012000);
*(.txBuffer)
} >RAM_D2