I arrived at:
$$\frac{Y[n]}{X[n]}=1-\frac{1}{6}z^{-2}+\frac{5}{6}z^{-1}$$
How do I arrive at:
$$H(z)=\frac{1}{1-\frac{5}{6}z^{-1}+\frac{1}{6}z^{-2}}$$
I arrived at:
$$\frac{Y[n]}{X[n]}=1-\frac{1}{6}z^{-2}+\frac{5}{6}z^{-1}$$
How do I arrive at:
$$H(z)=\frac{1}{1-\frac{5}{6}z^{-1}+\frac{1}{6}z^{-2}}$$
The first equation is not right. It should be
$$Y[n]=X[n]-\frac{1}{6}z^{-2}Y[n]+\frac{5}{6}z^{-1}Y[n]$$
Then if follows that
$$Y[n]-\frac{5}{6}z^{-1}Y[n]+\frac{1}{6}z^{-2}Y[n]=X[n]$$
$$Y[n](1-\frac{5}{6}z^{-1}+\frac{1}{6}z^{-2})=X[n]$$
$$\frac{Y[n]}{X[n]}=\frac{1}{1-\frac{5}{6}z^{-1}+\frac{1}{6}z^{-2}}$$
Simply write one ADDER output at one time, simple "blocks" functions.
Each delay block output is the "input" * (z^-1).
The output of the right delay block is Yn* (z^-1).
The output of the left delay block is Yn* (z^-2).
Output of 1st adder \$ S1 = Xn -1/6 * z^-2 * Yn \$.
Output of 2nd adder \$ Yn= S1 + 5/6 * z^-1 * Yn \$.
Replacing S1,
So, \$ Yn = Xn -1/6 * z^-2 * Yn + 5/6 * z^-1 * Yn \$.
Collecting Yn : \$ Yn * (1+ 1/6 * z^-2 - 5/6 * z^-1) = Xn \$ ...
Then \$ Yn/Xn = H(z) = 1/ ( 1+ 1/6 * z^-2 - 5/6 * z^-1) \$.