2

I am reading the code for an AXI Slave provided by Xilinx (here below). I am wondering why they declare all outputs as wire and then assign them to an internal register that is modified within always blocks (see for example the S_AXI_RVALID signal).

Why not declare them directly as registers? It seems to me that this would simplify the code and the actual implementation in the FPGA... is there any particular reason why they chose to do so?

Thanks a lot for your help!!!


    module frequency_extractor_v2_0_S00_AXI #
    (
        // Users to add parameters here

        // User parameters ends
        // Do not modify the parameters beyond this line

        // Width of S_AXI data bus
        parameter integer C_S_AXI_DATA_WIDTH    = 32,
        // Width of S_AXI address bus
        parameter integer C_S_AXI_ADDR_WIDTH    = 5
    )
    (
        // Users to add ports here

        // User ports ends
        // Do not modify the ports beyond this line

        // Global Clock Signal
        input wire  S_AXI_ACLK,
        // Global Reset Signal. This Signal is Active LOW
        input wire  S_AXI_ARESETN,
        // Write address (issued by master, acceped by Slave)
        input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
        // Write channel Protection type. This signal indicates the
            // privilege and security level of the transaction, and whether
            // the transaction is a data access or an instruction access.
        input wire [2 : 0] S_AXI_AWPROT,
        // Write address valid. This signal indicates that the master signaling
            // valid write address and control information.
        input wire  S_AXI_AWVALID,
        // Write address ready. This signal indicates that the slave is ready
            // to accept an address and associated control signals.
        output wire  S_AXI_AWREADY,
        // Write data (issued by master, acceped by Slave) 
        input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
        // Write strobes. This signal indicates which byte lanes hold
            // valid data. There is one write strobe bit for each eight
            // bits of the write data bus.    
        input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
        // Write valid. This signal indicates that valid write
            // data and strobes are available.
        input wire  S_AXI_WVALID,
        // Write ready. This signal indicates that the slave
            // can accept the write data.
        output wire  S_AXI_WREADY,
        // Write response. This signal indicates the status
            // of the write transaction.
        output wire [1 : 0] S_AXI_BRESP,
        // Write response valid. This signal indicates that the channel
            // is signaling a valid write response.
        output wire  S_AXI_BVALID,
        // Response ready. This signal indicates that the master
            // can accept a write response.
        input wire  S_AXI_BREADY,
        // Read address (issued by master, acceped by Slave)
        input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
        // Protection type. This signal indicates the privilege
            // and security level of the transaction, and whether the
            // transaction is a data access or an instruction access.
        input wire [2 : 0] S_AXI_ARPROT,
        // Read address valid. This signal indicates that the channel
            // is signaling valid read address and control information.
        input wire  S_AXI_ARVALID,
        // Read address ready. This signal indicates that the slave is
            // ready to accept an address and associated control signals.
        output wire  S_AXI_ARREADY,
        // Read data (issued by slave)
        output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
        // Read response. This signal indicates the status of the
            // read transfer.
        output wire [1 : 0] S_AXI_RRESP,
        // Read valid. This signal indicates that the channel is
            // signaling the required read data.
        output wire  S_AXI_RVALID,
        // Read ready. This signal indicates that the master can
            // accept the read data and response information.
        input wire  S_AXI_RREADY
    );

    // AXI4LITE signals
    reg [C_S_AXI_ADDR_WIDTH-1 : 0]  axi_awaddr;
    reg     axi_awready;
    reg     axi_wready;
    reg [1 : 0]     axi_bresp;
    reg     axi_bvalid;
    reg [C_S_AXI_ADDR_WIDTH-1 : 0]  axi_araddr;
    reg     axi_arready;
    reg [C_S_AXI_DATA_WIDTH-1 : 0]  axi_rdata;
    reg [1 : 0]     axi_rresp;
    reg     axi_rvalid;

    // Example-specific design signals
    // local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
    // ADDR_LSB is used for addressing 32/64 bit registers/memories
    // ADDR_LSB = 2 for 32 bits (n downto 2)
    // ADDR_LSB = 3 for 64 bits (n downto 3)
    localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
    localparam integer OPT_MEM_ADDR_BITS = 2;
    //----------------------------------------------
    //-- Signals for user logic register space example
    //------------------------------------------------
    //-- Number of Slave Registers 6
    reg [C_S_AXI_DATA_WIDTH-1:0]    slv_reg0;
    reg [C_S_AXI_DATA_WIDTH-1:0]    slv_reg1;
    reg [C_S_AXI_DATA_WIDTH-1:0]    slv_reg2;
    reg [C_S_AXI_DATA_WIDTH-1:0]    slv_reg3;
    reg [C_S_AXI_DATA_WIDTH-1:0]    slv_reg4;
    reg [C_S_AXI_DATA_WIDTH-1:0]    slv_reg5;
    wire     slv_reg_rden;
    wire     slv_reg_wren;
    reg [C_S_AXI_DATA_WIDTH-1:0]     reg_data_out;
    integer  byte_index;
    reg  aw_en;

    // I/O Connections assignments

    assign S_AXI_AWREADY    = axi_awready;
    assign S_AXI_WREADY = axi_wready;
    assign S_AXI_BRESP  = axi_bresp;
    assign S_AXI_BVALID = axi_bvalid;
    assign S_AXI_ARREADY    = axi_arready;
    assign S_AXI_RDATA  = axi_rdata;
    assign S_AXI_RRESP  = axi_rresp;
    assign S_AXI_RVALID = axi_rvalid;
    // Implement axi_awready generation
    // axi_awready is asserted for one S_AXI_ACLK clock cycle when both
    // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
    // de-asserted when reset is low.

    always @( posedge S_AXI_ACLK )
    begin
      if ( S_AXI_ARESETN == 1'b0 )
        begin
          axi_awready <= 1'b0;
          aw_en <= 1'b1;
        end 
      else
        begin    
          if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
            begin
              // slave is ready to accept write address when 
              // there is a valid write address and write data
              // on the write address and data bus. This design 
              // expects no outstanding transactions. 
              axi_awready <= 1'b1;
              aw_en <= 1'b0;
            end
            else if (S_AXI_BREADY && axi_bvalid)
                begin
                  aw_en <= 1'b1;
                  axi_awready <= 1'b0;
                end
          else           
            begin
              axi_awready <= 1'b0;
            end
        end 
    end       

    // Implement axi_awaddr latching
    // This process is used to latch the address when both 
    // S_AXI_AWVALID and S_AXI_WVALID are valid. 

    always @( posedge S_AXI_ACLK )
    begin
      if ( S_AXI_ARESETN == 1'b0 )
        begin
          axi_awaddr <= 0;
        end 
      else
        begin    
          if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
            begin
              // Write Address latching 
              axi_awaddr <= S_AXI_AWADDR;
            end
        end 
    end       

    // Implement axi_wready generation
    // axi_wready is asserted for one S_AXI_ACLK clock cycle when both
    // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is 
    // de-asserted when reset is low. 

    always @( posedge S_AXI_ACLK )
    begin
      if ( S_AXI_ARESETN == 1'b0 )
        begin
          axi_wready <= 1'b0;
        end 
      else
        begin    
          if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
            begin
              // slave is ready to accept write data when 
              // there is a valid write address and write data
              // on the write address and data bus. This design 
              // expects no outstanding transactions. 
              axi_wready <= 1'b1;
            end
          else
            begin
              axi_wready <= 1'b0;
            end
        end 
    end       

    // Implement memory mapped register select and write logic generation
    // The write data is accepted and written to memory mapped registers when
    // axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
    // select byte enables of slave registers while writing.
    // These registers are cleared when reset (active low) is applied.
    // Slave register write enable is asserted when valid address and data are available
    // and the slave is ready to accept the write address and write data.
    assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;

    always @( posedge S_AXI_ACLK )
    begin
      if ( S_AXI_ARESETN == 1'b0 )
        begin
          slv_reg0 <= 0;
          slv_reg1 <= 0;
          slv_reg2 <= 0;
          slv_reg3 <= 0;
          slv_reg4 <= 0;
          slv_reg5 <= 0;
        end 
      else begin
        if (slv_reg_wren)
          begin
            case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
              3'h0:
                for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
                  if ( S_AXI_WSTRB[byte_index] == 1 ) begin
                    // Respective byte enables are asserted as per write strobes 
                    // Slave register 0
                    slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
                  end  
              3'h1:
                for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
                  if ( S_AXI_WSTRB[byte_index] == 1 ) begin
                    // Respective byte enables are asserted as per write strobes 
                    // Slave register 1
                    slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
                  end  
              3'h2:
                for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
                  if ( S_AXI_WSTRB[byte_index] == 1 ) begin
                    // Respective byte enables are asserted as per write strobes 
                    // Slave register 2
                    slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
                  end  
              3'h3:
                for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
                  if ( S_AXI_WSTRB[byte_index] == 1 ) begin
                    // Respective byte enables are asserted as per write strobes 
                    // Slave register 3
                    slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
                  end  
              3'h4:
                for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
                  if ( S_AXI_WSTRB[byte_index] == 1 ) begin
                    // Respective byte enables are asserted as per write strobes 
                    // Slave register 4
                    slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
                  end  
              3'h5:
                for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
                  if ( S_AXI_WSTRB[byte_index] == 1 ) begin
                    // Respective byte enables are asserted as per write strobes 
                    // Slave register 5
                    slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
                  end  
              default : begin
                          slv_reg0 <= slv_reg0;
                          slv_reg1 <= slv_reg1;
                          slv_reg2 <= slv_reg2;
                          slv_reg3 <= slv_reg3;
                          slv_reg4 <= slv_reg4;
                          slv_reg5 <= slv_reg5;
                        end
            endcase
          end
      end
    end    

    // Implement write response logic generation
    // The write response and response valid signals are asserted by the slave 
    // when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.  
    // This marks the acceptance of address and indicates the status of 
    // write transaction.

    always @( posedge S_AXI_ACLK )
    begin
      if ( S_AXI_ARESETN == 1'b0 )
        begin
          axi_bvalid  <= 0;
          axi_bresp   <= 2'b0;
        end 
      else
        begin    
          if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
            begin
              // indicates a valid write response is available
              axi_bvalid <= 1'b1;
              axi_bresp  <= 2'b0; // 'OKAY' response 
            end                   // work error responses in future
          else
            begin
              if (S_AXI_BREADY && axi_bvalid) 
                //check if bready is asserted while bvalid is high) 
                //(there is a possibility that bready is always asserted high)   
                begin
                  axi_bvalid <= 1'b0; 
                end  
            end
        end
    end   

    // Implement axi_arready generation
    // axi_arready is asserted for one S_AXI_ACLK clock cycle when
    // S_AXI_ARVALID is asserted. axi_awready is 
    // de-asserted when reset (active low) is asserted. 
    // The read address is also latched when S_AXI_ARVALID is 
    // asserted. axi_araddr is reset to zero on reset assertion.

    always @( posedge S_AXI_ACLK )
    begin
      if ( S_AXI_ARESETN == 1'b0 )
        begin
          axi_arready <= 1'b0;
          axi_araddr  <= 32'b0;
        end 
      else
        begin    
          if (~axi_arready && S_AXI_ARVALID)
            begin
              // indicates that the slave has acceped the valid read address
              axi_arready <= 1'b1;
              // Read address latching
              axi_araddr  <= S_AXI_ARADDR;
            end
          else
            begin
              axi_arready <= 1'b0;
            end
        end 
    end       

    // Implement axi_arvalid generation
    // axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both 
    // S_AXI_ARVALID and axi_arready are asserted. The slave registers 
    // data are available on the axi_rdata bus at this instance. The 
    // assertion of axi_rvalid marks the validity of read data on the 
    // bus and axi_rresp indicates the status of read transaction.axi_rvalid 
    // is deasserted on reset (active low). axi_rresp and axi_rdata are 
    // cleared to zero on reset (active low).  
    always @( posedge S_AXI_ACLK )
    begin
      if ( S_AXI_ARESETN == 1'b0 )
        begin
          axi_rvalid <= 0;
          axi_rresp  <= 0;
        end 
      else
        begin    
          if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
            begin
              // Valid read data is available at the read data bus
              axi_rvalid <= 1'b1;
              axi_rresp  <= 2'b0; // 'OKAY' response
            end   
          else if (axi_rvalid && S_AXI_RREADY)
            begin
              // Read data is accepted by the master
              axi_rvalid <= 1'b0;
            end                
        end
    end    

    // Implement memory mapped register select and read logic generation
    // Slave register read enable is asserted when valid address is available
    // and the slave is ready to accept the read address.
    assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
    always @(*)
    begin
          // Address decoding for reading registers
          case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
            3'h0   : reg_data_out <= slv_reg0;
            3'h1   : reg_data_out <= slv_reg1;
            3'h2   : reg_data_out <= slv_reg2;
            3'h3   : reg_data_out <= slv_reg3;
            3'h4   : reg_data_out <= slv_reg4;
            3'h5   : reg_data_out <= slv_reg5;
            default : reg_data_out <= 0;
          endcase
    end

    // Output register or memory read data
    always @( posedge S_AXI_ACLK )
    begin
      if ( S_AXI_ARESETN == 1'b0 )
        begin
          axi_rdata  <= 0;
        end 
      else
        begin    
          // When there is a valid read address (S_AXI_ARVALID) with 
          // acceptance of read address by the slave (axi_arready), 
          // output the read dada 
          if (slv_reg_rden)
            begin
              axi_rdata <= reg_data_out;     // register read data
            end   
        end
    end    

    // Add user logic here

    // User logic ends

    endmodule```
leopicchio
  • 162
  • 8
  • 1
    May be they want to read those output ports internally. It is not a good coding style to read output ports to drive internal logic. So they use an intermediate signal and then assign it to output instead. – Mitu Raj Apr 28 '22 at 09:16
  • Additionally to agreeing with @MituRaj (less lines of code don't mean better code) it is not likely that a good optimizer would be affected by such assignments, resulting in more FPGA resource usage. – devnull Apr 28 '22 at 10:12
  • Ok thank you, so you think it is just a matter of style and there is no actual difference in behaviour, right? – leopicchio Apr 28 '22 at 11:27

1 Answers1

1

AXI devices can return data in the "same" cycle, so it can be latched by the requester on the next rising edge. For this to work, the outputs must be a combinatorial function of the inputs, with no register in between that would cause a delay.

Declaring them as wire will make the compiler check that the combinatorial circuit that does this is fully defined, and has no feedback path that behaves like a latch (i.e. it turns the "inferring latches" warning into an error).

These two things are largely unrelated, but when you're writing logic that needs to be purely combinatorial, the extra check is really useful.

Simon Richter
  • 12,031
  • 1
  • 23
  • 49