I am trying to understand the concept of Q factor for higher order circuit. Consider the circuit as shown in the figure
I calculated Zin using Matlab and the transfer function looks as follows: $$Zin(s)=\frac{{\left(c_1 \,c_2 \,c_3 \,l_1 \,l_2 \,r_1 \,r_2 \right)}\,s^5 +{\left(c_2 \,c_3 \,l_1 \,l_2 \,r_1 +c_1 \,c_3 \,l_1 \,l_2 \,r_1 +c_1 \,c_2 \,l_1 \,l_2 \,r_1 \right)}\,s^4 +{\left(c_2 \,c_3 \,l_2 \,r_1 \,r_2 +c_2 \,c_3 \,l_1 \,r_1 \,r_2 +c_1 \,c_3 \,l_1 \,r_1 \,r_2 \right)}\,s^3 +{\left(c_3 \,l_2 \,r_1 +c_2 \,l_2 \,r_1 +c_2 \,l_1 \,r_1 +c_1 \,l_1 \,r_1 \right)}\,s^2 +{\left(c_3 \,r_1 \,r_2 \right)}\,s+r_1 }{{\left(c_1 \,c_2 \,c_3 \,l_1 \,l_2 \,r_2 \right)}\,s^5 +{\left(c_2 \,c_3 \,l_1 \,l_2 +c_1 \,c_3 \,l_1 \,l_2 +c_1 \,c_2 \,l_1 \,l_2 +c_1 \,c_2 \,c_3 \,l_2 \,r_1 \,r_2 \right)}\,s^4 +{\left(c_2 \,c_3 \,l_2 \,r_2 +c_2 \,c_3 \,l_2 \,r_1 +c_2 \,c_3 \,l_1 \,r_2 +c_1 \,c_3 \,l_2 \,r_1 +c_1 \,c_3 \,l_1 \,r_2 +c_1 \,c_2 \,l_2 \,r_1 \right)}\,s^3 +{\left(c_3 \,l_2 +c_2 \,l_2 +c_2 \,l_1 +c_2 \,c_3 \,r_1 \,r_2 +c_1 \,l_1 +c_1 \,c_3 \,r_1 \,r_2 \right)}\,s^2 +{\left(c_3 \,r_2 +c_2 \,r_1 +c_1 \,r_1 \right)}\,s+1}$$
which is a fifth order transfer function. Now if i substitute the values of components and convert the denominator to second order sections in the form of $$s^2 + 2\delta \omega\cdot s + \omega^2$$ then i can find the Q factor of each section. The overall Q will be simply the average of the Q factors, in this case I will have two Q factors.
Is my analysis correct?