I am trying to calculate the Sequence Impedance/Zero Sequence Impedance of couple of lines, but Im not sure if the calculation are right, and besides there are some tricky things on the data provided.
- Tower (in meters)
- • PS30
• Nominal voltage 34.5 kV
• Circuits 1
• Conductors p/phase 1
• 60 Hz
• terrain resistivity 100Ohm/m
• Ground wires No
• ACSR, 266.8 KCM, 26/7
• MGR/ 6.61416 mm=0.260400141inch=0.021700001ft
• rac 0.23426 Ohm/km (0.350ohm/mi) • wk=0.12134
Then in the calculations
\$
\large{}D_{e}=2160\sqrt{\frac{\rho}{f}}=2160\sqrt{\frac{100}{60Hz}}=2788.5480ft
\$
\$
\textbf{$r_{ac}=0.23426\Omega/km=0.37692434\Omega/mi$}
\$
At 60Hz
\$r_{d}=0.09528\Omega/mi;\omega k=0.12134\$
Distance between wires
\$
D_{ab}=3.76804ft
D_{ac}=6.10236ft
D_{bc}=3.76804ft
D_{abc}=4.42493ft
\$
Mutual inductances
\$Z_{aa}=Z_{bb}=Z_{cc}\$\$=r_{a}+r_{d}+j\omega kln\frac{D_{e}}{D_{s}}\$
\$=(0.37692+0.09528)+j(0.12134)ln\frac{2788.5480}{0.0217}\$
\$0.4722+j1.427409\Omega/mi\$
\$Z_{ab}=r_{d}+j\omega kln\frac{D_{e}}{D_{ab}}\$
\$0.09528+j(0.12134)ln\frac{2788.5480}{3.76804}\$
\$0.09528+j0.8016595\Omega/mi\$
\$Z_{ac}=0.09528+j(0.12134)ln\frac{2788.5480}{6.10236}\Omega/mi\$
\$0.09528+j0.743159\Omega*mi\$
\$Z_{bc}=Z_{ab}=0.4722+j1.427409\Omega/mi\$
\$Z_{abc}\$=\begin{array}{ccc} 0.4722+j1.427409 & 0.09528+j0.8016595 & 0.09528+j0.743159\\ 0.09528+j0.8016595 & 0.4722+j1.427409 & 0.09528+j0.8016595\\ 0.09528+j0.743159 & 0.09528+j0.8016595 & 0.4722+1.427409 \end{array} $
My questions are
*if this is correct since in the data provided the value of \$ rac =0.23426 Ohm/km\$ was used (converted to Ohms/miles) or should it be used the tables value of 0.350Ohm/mile.
- then how can be calculated the zero sequence? Does it need to be transposed and apply \$[A]^{-1} [Zabc] [A]\$.
Note: I am using the book of Anderson, Analysis of Faulted Power Systems, but if there is another way to do so please tell it. The main concern is if the values are ok, since the notation sometimes are referred in different way.