Well, the real power is given by:
$$\text{P}=\text{V}_\text{rms}\text{I}_\text{rms}\cos\left(\varphi\right)\tag1$$
Where \$\varphi=\left|\arg\left(\underline{\text{V}}\right)-\arg\left(\underline{\text{I}}\right)\right|\$.
The complex power is given by:
$$\text{Q}=\text{V}_\text{rms}\text{I}_\text{rms}\sin\left(\varphi\right)\tag2$$
And the apparent power is given by:
$$\text{S}=\sqrt{\text{P}^2+\text{Q}^2}=\text{V}_\text{rms}\text{I}_\text{rms}\tag3$$
So, for your circuit we get:
- Real power:
$$\text{P}=\text{V}_\text{rms}\cdot\underbrace{\frac{\text{V}_\text{rms}}{\sqrt{\text{R}^2+\left(\omega\text{L}\right)^2}}}_{=\space\text{I}_\text{rms}}\cdot\underbrace{\frac{1}{\sqrt{1+\left(\frac{\omega\text{L}}{\text{R}}\right)^2}}}_{=\space\cos\left(\varphi\right)}=\frac{\text{R}\text{V}_\text{rms}^2}{\text{R}^2+\left(\omega\text{L}\right)^2}\tag4$$
- Complex power:
$$\text{Q}=\text{V}_\text{rms}\cdot\underbrace{\frac{\text{V}_\text{rms}}{\sqrt{\text{R}^2+\left(\omega\text{L}\right)^2}}}_{=\space\text{I}_\text{rms}}\cdot\underbrace{\frac{\omega\text{L}}{\text{R}}\cdot\frac{1}{\sqrt{1+\left(\frac{\omega\text{L}}{\text{R}}\right)^2}}}_{=\space\sin\left(\varphi\right)}=\frac{\omega\text{L}\text{V}_\text{rms}^2}{\text{R}^2+\left(\omega\text{L}\right)^2}\tag5$$
- Apparent power:
$$\text{S}=\text{V}_\text{rms}\cdot\underbrace{\frac{\text{V}_\text{rms}}{\sqrt{\text{R}^2+\left(\omega\text{L}\right)^2}}}_{=\space\text{I}_\text{rms}}=\frac{\text{V}_\text{rms}^2}{\sqrt{\text{R}^2+\left(\omega\text{L}\right)^2}}\tag6$$
Now, we want to solve:
$$\frac{\text{V}_\text{rms}^2}{\omega\text{L}}\left(1-\frac{\eta\space\text{%}}{100}\right)=\frac{\omega\text{L}\text{V}_\text{rms}^2}{\text{R}^2+\left(\omega\text{L}\right)^2}\tag7$$
Using your values, we get:
$$\frac{230^2}{2\pi\cdot50\cdot400\cdot10^{-3}}\cdot\left(1-\frac{75}{100}\right)=\frac{2\pi\cdot50\cdot400\cdot10^{-3}\cdot230^2}{\text{R}^2+\left(2\pi\cdot50\cdot400\cdot10^{-3}\right)^2}\space\Longrightarrow\space$$
$$\text{R}=40 \sqrt{3} \pi\approx217.656\space\Omega\tag8$$