I am trying to analyse the basic circuit of a dimmer. I don't have much experience in AC circuits, so I am not sure how do I need to proceed. My circuit is the next:
I have something like this:
I have found some interesting relationships. Like the output vrms based on the firing angle θ:
Using:
$$ V_{rms} = \sqrt{ \frac{1}{T} \int_0^T v^2(t) dt } $$ we obtain:
$$ V_{rms} = \sqrt{ \frac{1}{ \pi } [ \int_0^{ \theta } 0 d(\omega t) + \int_{\theta}^{ \pi} Sin^2(\omega t) d(\omega t) ] } = \sqrt{ \frac{ V_{max}^2 }{ \pi} \int_{\theta}^{ \pi} \frac{1}{2} [1-Cos(2 \omega t) d(\omega t)]} = \sqrt{ \frac{V_{max}^2}{2 \pi} (\omega t-\frac{Sin(2 \omega t)}{2} ) \Big|_{\theta}^{\pi}} = \sqrt{ \frac{V_{max}^2}{2 \pi} [ \pi-\frac{1}{2}Sin(2 \pi) - ( \theta - \frac{1}{2}Sin(2 \theta) ) ]} = \sqrt{ \frac{V_{max}^2}{2 \pi} ( \pi \theta + \frac{Sin(2 \theta)}{2} ) } = V_{max} \sqrt{ \frac{1}{2} - \frac{\theta}{2 \pi} + \frac{Sin(2 \theta)}{4 \pi} } $$
But I don't know how to obtain the phase angle based on the values of the resistance, the capacitance and the load