I have the following circuit:
simulate this circuit – Schematic created using CircuitLab
And I used KCL and KVL to write the following sets of equations:
$$ \begin{cases} \text{I}_0=\text{I}_1+\text{I}_2\\ \\ \text{I}_2=\text{I}_4+\text{I}_5\\ \\ \text{I}_7=\text{I}_5+\text{I}_6\\ \\ \text{I}_3=\text{I}_4+\text{I}_7\\ \\ \text{I}_0=\text{I}_1+\text{I}_3 \end{cases}\tag1 $$
And
$$ \begin{cases} \text{I}_1=\frac{\text{V}_\text{i}-\text{V}_1}{\text{R}_1}\\ \\ \text{I}_1=\frac{\text{V}_1}{\text{R}_2}\\ \\ \text{I}_2=\frac{\text{V}_\text{i}-\text{V}_2}{\text{R}_3}\\ \\ \text{I}_4=\frac{\text{V}_2}{\text{R}_4}\\ \\ \text{I}_5=\frac{\text{V}_2-\text{V}_3}{\text{R}_5}\\ \\ \text{I}_5=\frac{\text{V}_3-\text{V}_4}{\text{R}_6}\\ \\ \text{I}_7=\frac{\text{V}_4-\text{V}_5}{\text{R}_7}\\ \\ \text{I}_7=\frac{\text{V}_5}{\text{R}_8} \end{cases}\tag2 $$
But when I tried to solve them for all unknowns I found that there are no solutions. This implies that my equations lead to a contradiction but I can't see where I am going wrong. Can someone show me where I took the wrong path?
Thanks a lot.