I assume the schematic is this one:

simulate this circuit – Schematic created using CircuitLab
The KCL is:
$$\frac{V_{\text{x}\left(t\right)}}{R_1}+C_1\:\frac{\text{d}\,V_{\text{x}\left(t\right)}}{\text{d} t}=\frac{V_{\text{1}\left(t\right)}}{R_1}$$
Both \$V_x\$ and \$V_1\$ are functions of time, with \$V_1\left(t\right)=V_\text{PK}\cdot\operatorname{sin}\left(\omega\: t\right)=10\cdot\operatorname{sin}\left(100\pi\: t\right)\$.
In standard form for first order linear differential equations, as used by first year calculus students to solve such equations, the above becomes:
$$\frac{\text{d}\,V_{\text{x}\left(t\right)}}{\text{d} t}+\frac{1}{R_1\:C_1}\:V_{\text{x}\left(t\right)}=\frac{V_{\text{1}\left(t\right)}}{R_1\:C_1}$$
Setting \$\tau=R_1\:C_1\$, the integrating factor is \$e^{\:t / \tau}\$ and so,
$$\begin{align*}
\frac{\text{d}}{\text{d} t}\:\left(V_{\text{x}\left(t\right)}\:e^{\:t / \tau}\right)&=\frac{V_{\text{1}\left(t\right)}}{\tau}\:e^{\:t / \tau}\\\\
V_{\text{x}\left(t\right)}\:e^{\:t / \tau}&=\int \frac{V_{\text{1}\left(t\right)}}{\tau}\:e^{\:t / \tau}\:\text{d} t\\\\
V_{\text{x}\left(t\right)}&=e^{\:-t / \tau}\int \frac{V_{\text{1}\left(t\right)}}{\tau}\:e^{\:t / \tau}\:\text{d} t
\end{align*}$$
Taking into account the initial condition that \$V_x\left(t=0\right)=0\:\text{V}\$ (in order to solve for the constant of integration, above):
$$\begin{align*}V_{\text{x}\left(t\right)}&=V_\text{PK}\cdot\frac{\omega\:\tau\left[e^{\:-t/\tau}-\operatorname{cos}\left(\omega\: t\right)\right]+\operatorname{sin}\left(\omega\: t\right)}{1+\omega^2\: \tau^2}\\\\&=V_\text{PK}\cdot\left[\frac{\omega\:\tau}{1+\omega^2\:\tau^2}\cdot e^{\:-t/\tau}+\frac{\operatorname{sin}\left(\omega\:t+\operatorname{tan}^{-1}\left(-\omega\:\tau\right)\right)}{\sqrt{1+\omega^2\:\tau^2}}\right]\end{align*}$$
From here, with \$V_\text{PK}=10\:\text{V}\$ and \$\omega=100\:\pi\:\frac{\text{rad}}{\text{s}}\$ and \$\tau=100\:\text{s}\$ and using \$I_{\left(t\right)}=\frac{V_{\text{1}\left(t\right)}-V_{\text{x}\left(t\right)}}{R_1}\$ at \$t=50\:\text{ms}\$. I get a value of \$-6.365\:\mu\text{A}\$.
Running a Spice deck:
v1 n001 0 sine(0 10 50)
r1 n001 vx 100
c1 vx 0 1
.tran 0 50m 0 10n uic
.meas TRAN CURRENT FIND I(R1) WHEN time=50m CROSS=1
.end
Spice reports:
current: i(r1)=-6.36461e-006 at 0.05
I think that means I probably didn't mess up on the equation solution.