The long-tailed pair is interesting enough that I should probably post a mathematical solution, using the original Ebers-Moll equation for the active region of operation for the two BJTs. No Early Effect (basewidth modultion) included.
Assumed: Identical (matching) BJTs whose saturation currents are the same and \$\beta\approx \infty\$ is assumed.
Knowing:
$$\begin{align*}
I_{\text{C}_1}&=I_\text{SAT}\:\left(e^\frac{V_{\text{B}_1} -V_\text{E}}{V_T}-1\right)\\\\
I_{\text{C}_2}&=I_\text{SAT}\:\left(e^\frac{V_{\text{B}_2} -V_\text{E}}{V_T}-1\right)
\end{align*}$$
Nodal analysis provides:
$$\begin{align*}
V_\text{E}&=V_\text{EE} + V_T\:\operatorname{LambertW}\left[\frac{I_\text{SAT}\:R_\text{E}}{V_T}\left(e^\frac{V_{\text{B}_1}}{V_T} + e^\frac{V_{\text{B}_2}}{V_T}\right)\:e^{\frac{2\:I_\text{SAT}\:R_\text{E} - V_\text{EE}}{V_T}}\right]-2\:I_\text{SAT}\:R_\text{E}
\end{align*}$$
It's probably better to focus on \$\Delta V_\text{B}=\frac{V_{\text{B}_1}-V_{\text{B}_2}}{2}\$ and \$V_{\text{B}}=\frac{V_{\text{B}_1}+V_{\text{B}_2}}{2}\$. Then set:
$$\begin{align*}
V_{\text{B}\eta} &=V_\text{B} + 2\: I_\text{SAT}\: R_\text{E} - V_\text{EE}\\\\
\eta&=\operatorname{LambertW}{\left [\frac{I_\text{SAT}\: R_\text{E}}{V_T} \left(e^{\frac{2\:\Delta V_\text{B}}{V_T}} + 1\right) e^{\frac{V_{\text{B}\eta}- \Delta V_\text{B}}{V_T}} \right ]}\end{align*}$$
(Clearly, \$V_{\text{B}\eta}\$ is a voltage. In this case, one referred to the most negative rail but that also takes into account a small voltage drop due to the very tiny saturation currents of the two BJTs through \$R_\text{E}\$. Also, \$\eta\$ is a unitless ratio of the voltage drop caused by the sum of both emitter currents flowing through \$R_\text{E}\$, with respect to the thermal voltage used to compute those currents.)
Which makes it a little simpler to write out:
$$\begin{align*}
V_\text{E}&=V_\text{EE} + \eta\:V_T-2\:I_\text{SAT}\:R_\text{E}
\end{align*}$$
And of course:
$$\begin{align*}
V_{\text{C}_1}&=V_\text{CC} - R_{\text{C}_1}\:I_\text{SAT}\:\left(e^\frac{V_{\text{B}_1} -V_\text{E}}{V_T}-1\right)=V_\text{CC} - R_{\text{C}_1}\:I_{\text{C}_1}\\\\
V_{\text{C}_2}&=V_\text{CC} - R_{\text{C}_2}\:I_\text{SAT}\:\left(e^\frac{V_{\text{B}_2} -V_\text{E}}{V_T}-1\right)=V_\text{CC} - R_{\text{C}_2}\:I_{\text{C}_2}
\end{align*}$$
Assuming saturation is avoided, that's all there is to it. As you can see, it begins with figuring out the value of \$V_\text{E}\$. The rest is just \$V_\text{CC}\$ less the voltage drop across the appropriate resistor times the appropriate collector current.
To test the values, assume \$I_\text{SAT}=10\:\text{fA}\$, \$V_\text{CC}=+10\:\text{V}\$, \$V_\text{EE}=-10\:\text{V}\$, \$V_T=26\:\text{mV}\$, and all three resistors are \$1\:\text{k}\Omega\$. If \$V_{\text{B}_1}=+10\:\text{mV}\$ and \$V_{\text{B}_1}=+20\:\text{mV}\$, then ignoring \$\beta\$ one would get: \$V_\text{E}=-683\:\text{mV}\$, \$V_{\text{C}_1}=6.227\:\text{V}\$, and \$V_{\text{C}_2}=4.457\:\text{V}\$. By comparison, with \$\beta=150\$ included these would be: \$V_\text{E}=-683\:\text{mV}\$, \$V_{\text{C}_1}=6.251\:\text{V}\$, and \$V_{\text{C}_2}=4.493\:\text{V}\$.
The small signal voltage gain would be about \$\mid\: A_v\mid\:\approx 365\$.
The current ratios now look like:
$$\begin{align*}
\frac{I_{\text{C}_2}}{I_{\text{C}_1}}&=\frac{1-e^{\left(\frac{V_{\text{B}\eta}-\Delta V_\text{B}}{V_T} -\eta\right)}}{1-e^{\left(\frac{V_{\text{B}\eta}+\Delta V_\text{B}}{V_T} -\eta\right)}}\end{align*}$$